MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfvalf Structured version   Visualization version   GIF version

Theorem cantnfvalf 8445
Description: Lemma for cantnf 8473. The function appearing in cantnfval 8448 is unconditionally a function. (Contributed by Mario Carneiro, 20-May-2015.)
Hypothesis
Ref Expression
cantnfvalf.f 𝐹 = seq𝜔((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷)), ∅)
Assertion
Ref Expression
cantnfvalf 𝐹:ω⟶On
Distinct variable groups:   𝑧,𝑘,𝐴   𝐵,𝑘,𝑧
Allowed substitution hints:   𝐶(𝑧,𝑘)   𝐷(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem cantnfvalf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfvalf.f . . 3 𝐹 = seq𝜔((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷)), ∅)
21fnseqom 7437 . 2 𝐹 Fn ω
3 nn0suc 6982 . . . 4 (𝑥 ∈ ω → (𝑥 = ∅ ∨ ∃𝑦 ∈ ω 𝑥 = suc 𝑦))
4 fveq2 6103 . . . . . . 7 (𝑥 = ∅ → (𝐹𝑥) = (𝐹‘∅))
5 0ex 4718 . . . . . . . 8 ∅ ∈ V
61seqom0g 7438 . . . . . . . 8 (∅ ∈ V → (𝐹‘∅) = ∅)
75, 6ax-mp 5 . . . . . . 7 (𝐹‘∅) = ∅
84, 7syl6eq 2660 . . . . . 6 (𝑥 = ∅ → (𝐹𝑥) = ∅)
9 0elon 5695 . . . . . 6 ∅ ∈ On
108, 9syl6eqel 2696 . . . . 5 (𝑥 = ∅ → (𝐹𝑥) ∈ On)
111seqomsuc 7439 . . . . . . . . 9 (𝑦 ∈ ω → (𝐹‘suc 𝑦) = (𝑦(𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷))(𝐹𝑦)))
12 df-ov 6552 . . . . . . . . 9 (𝑦(𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷))(𝐹𝑦)) = ((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷))‘⟨𝑦, (𝐹𝑦)⟩)
1311, 12syl6eq 2660 . . . . . . . 8 (𝑦 ∈ ω → (𝐹‘suc 𝑦) = ((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷))‘⟨𝑦, (𝐹𝑦)⟩))
14 df-ov 6552 . . . . . . . . . . . 12 (𝐶 +𝑜 𝐷) = ( +𝑜 ‘⟨𝐶, 𝐷⟩)
15 fnoa 7475 . . . . . . . . . . . . . 14 +𝑜 Fn (On × On)
16 oacl 7502 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 +𝑜 𝑦) ∈ On)
1716rgen2a 2960 . . . . . . . . . . . . . 14 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 +𝑜 𝑦) ∈ On
18 ffnov 6662 . . . . . . . . . . . . . 14 ( +𝑜 :(On × On)⟶On ↔ ( +𝑜 Fn (On × On) ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 +𝑜 𝑦) ∈ On))
1915, 17, 18mpbir2an 957 . . . . . . . . . . . . 13 +𝑜 :(On × On)⟶On
2019, 9f0cli 6278 . . . . . . . . . . . 12 ( +𝑜 ‘⟨𝐶, 𝐷⟩) ∈ On
2114, 20eqeltri 2684 . . . . . . . . . . 11 (𝐶 +𝑜 𝐷) ∈ On
2221rgen2w 2909 . . . . . . . . . 10 𝑘𝐴𝑧𝐵 (𝐶 +𝑜 𝐷) ∈ On
23 eqid 2610 . . . . . . . . . . 11 (𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷)) = (𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷))
2423fmpt2 7126 . . . . . . . . . 10 (∀𝑘𝐴𝑧𝐵 (𝐶 +𝑜 𝐷) ∈ On ↔ (𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷)):(𝐴 × 𝐵)⟶On)
2522, 24mpbi 219 . . . . . . . . 9 (𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷)):(𝐴 × 𝐵)⟶On
2625, 9f0cli 6278 . . . . . . . 8 ((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷))‘⟨𝑦, (𝐹𝑦)⟩) ∈ On
2713, 26syl6eqel 2696 . . . . . . 7 (𝑦 ∈ ω → (𝐹‘suc 𝑦) ∈ On)
28 fveq2 6103 . . . . . . . 8 (𝑥 = suc 𝑦 → (𝐹𝑥) = (𝐹‘suc 𝑦))
2928eleq1d 2672 . . . . . . 7 (𝑥 = suc 𝑦 → ((𝐹𝑥) ∈ On ↔ (𝐹‘suc 𝑦) ∈ On))
3027, 29syl5ibrcom 236 . . . . . 6 (𝑦 ∈ ω → (𝑥 = suc 𝑦 → (𝐹𝑥) ∈ On))
3130rexlimiv 3009 . . . . 5 (∃𝑦 ∈ ω 𝑥 = suc 𝑦 → (𝐹𝑥) ∈ On)
3210, 31jaoi 393 . . . 4 ((𝑥 = ∅ ∨ ∃𝑦 ∈ ω 𝑥 = suc 𝑦) → (𝐹𝑥) ∈ On)
333, 32syl 17 . . 3 (𝑥 ∈ ω → (𝐹𝑥) ∈ On)
3433rgen 2906 . 2 𝑥 ∈ ω (𝐹𝑥) ∈ On
35 ffnfv 6295 . 2 (𝐹:ω⟶On ↔ (𝐹 Fn ω ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ On))
362, 34, 35mpbir2an 957 1 𝐹:ω⟶On
Colors of variables: wff setvar class
Syntax hints:  wo 382   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  c0 3874  cop 4131   × cxp 5036  Oncon0 5640  suc csuc 5642   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  ωcom 6957  seq𝜔cseqom 7429   +𝑜 coa 7444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seqom 7430  df-oadd 7451
This theorem is referenced by:  cantnfval2  8449  cantnfle  8451  cantnflt  8452  cantnflem1d  8468  cantnflem1  8469  cnfcomlem  8479
  Copyright terms: Public domain W3C validator