MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0gsumle Structured version   Visualization version   GIF version

Theorem xrge0gsumle 22444
Description: A finite sum in the nonnegative extended reals is monotonic in the support. (Contributed by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
xrge0gsumle.g 𝐺 = (ℝ*𝑠s (0[,]+∞))
xrge0gsumle.a (𝜑𝐴𝑉)
xrge0gsumle.f (𝜑𝐹:𝐴⟶(0[,]+∞))
xrge0gsumle.b (𝜑𝐵 ∈ (𝒫 𝐴 ∩ Fin))
xrge0gsumle.c (𝜑𝐶𝐵)
Assertion
Ref Expression
xrge0gsumle (𝜑 → (𝐺 Σg (𝐹𝐶)) ≤ (𝐺 Σg (𝐹𝐵)))

Proof of Theorem xrge0gsumle
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 iccssxr 12127 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
2 xrge0gsumle.g . . . . . . . . . 10 𝐺 = (ℝ*𝑠s (0[,]+∞))
3 xrsbas 19581 . . . . . . . . . 10 * = (Base‘ℝ*𝑠)
42, 3ressbas2 15758 . . . . . . . . 9 ((0[,]+∞) ⊆ ℝ* → (0[,]+∞) = (Base‘𝐺))
51, 4ax-mp 5 . . . . . . . 8 (0[,]+∞) = (Base‘𝐺)
6 eqid 2610 . . . . . . . . . 10 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
76xrge0subm 19606 . . . . . . . . 9 (0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
8 xrex 11705 . . . . . . . . . . . . 13 * ∈ V
9 difexg 4735 . . . . . . . . . . . . 13 (ℝ* ∈ V → (ℝ* ∖ {-∞}) ∈ V)
108, 9ax-mp 5 . . . . . . . . . . . 12 (ℝ* ∖ {-∞}) ∈ V
11 simpl 472 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ*)
12 ge0nemnf 11878 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ≠ -∞)
1311, 12jca 553 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → (𝑥 ∈ ℝ*𝑥 ≠ -∞))
14 elxrge0 12152 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥))
15 eldifsn 4260 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ*𝑥 ≠ -∞))
1613, 14, 153imtr4i 280 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (ℝ* ∖ {-∞}))
1716ssriv 3572 . . . . . . . . . . . 12 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
18 ressabs 15766 . . . . . . . . . . . 12 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ⊆ (ℝ* ∖ {-∞})) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞)))
1910, 17, 18mp2an 704 . . . . . . . . . . 11 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
202, 19eqtr4i 2635 . . . . . . . . . 10 𝐺 = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
216xrs10 19604 . . . . . . . . . 10 0 = (0g‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
2220, 21subm0 17179 . . . . . . . . 9 ((0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞}))) → 0 = (0g𝐺))
237, 22ax-mp 5 . . . . . . . 8 0 = (0g𝐺)
24 xrge0cmn 19607 . . . . . . . . . 10 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
252, 24eqeltri 2684 . . . . . . . . 9 𝐺 ∈ CMnd
2625a1i 11 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
27 elfpw 8151 . . . . . . . . . 10 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑠𝐴𝑠 ∈ Fin))
2827simprbi 479 . . . . . . . . 9 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) → 𝑠 ∈ Fin)
2928adantl 481 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑠 ∈ Fin)
30 xrge0gsumle.f . . . . . . . . 9 (𝜑𝐹:𝐴⟶(0[,]+∞))
3127simplbi 475 . . . . . . . . 9 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) → 𝑠𝐴)
32 fssres 5983 . . . . . . . . 9 ((𝐹:𝐴⟶(0[,]+∞) ∧ 𝑠𝐴) → (𝐹𝑠):𝑠⟶(0[,]+∞))
3330, 31, 32syl2an 493 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑠):𝑠⟶(0[,]+∞))
34 c0ex 9913 . . . . . . . . . 10 0 ∈ V
3534a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ∈ V)
3633, 29, 35fdmfifsupp 8168 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑠) finSupp 0)
375, 23, 26, 29, 33, 36gsumcl 18139 . . . . . . 7 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑠)) ∈ (0[,]+∞))
381, 37sseldi 3566 . . . . . 6 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑠)) ∈ ℝ*)
39 eqid 2610 . . . . . 6 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) = (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))
4038, 39fmptd 6292 . . . . 5 (𝜑 → (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))):(𝒫 𝐴 ∩ Fin)⟶ℝ*)
41 frn 5966 . . . . 5 ((𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))):(𝒫 𝐴 ∩ Fin)⟶ℝ* → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
4240, 41syl 17 . . . 4 (𝜑 → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
43 0ss 3924 . . . . . . 7 ∅ ⊆ 𝐴
44 0fin 8073 . . . . . . 7 ∅ ∈ Fin
45 elfpw 8151 . . . . . . 7 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ⊆ 𝐴 ∧ ∅ ∈ Fin))
4643, 44, 45mpbir2an 957 . . . . . 6 ∅ ∈ (𝒫 𝐴 ∩ Fin)
47 0cn 9911 . . . . . 6 0 ∈ ℂ
48 reseq2 5312 . . . . . . . . . 10 (𝑠 = ∅ → (𝐹𝑠) = (𝐹 ↾ ∅))
49 res0 5321 . . . . . . . . . 10 (𝐹 ↾ ∅) = ∅
5048, 49syl6eq 2660 . . . . . . . . 9 (𝑠 = ∅ → (𝐹𝑠) = ∅)
5150oveq2d 6565 . . . . . . . 8 (𝑠 = ∅ → (𝐺 Σg (𝐹𝑠)) = (𝐺 Σg ∅))
5223gsum0 17101 . . . . . . . 8 (𝐺 Σg ∅) = 0
5351, 52syl6eq 2660 . . . . . . 7 (𝑠 = ∅ → (𝐺 Σg (𝐹𝑠)) = 0)
5439, 53elrnmpt1s 5294 . . . . . 6 ((∅ ∈ (𝒫 𝐴 ∩ Fin) ∧ 0 ∈ ℂ) → 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
5546, 47, 54mp2an 704 . . . . 5 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))
5655a1i 11 . . . 4 (𝜑 → 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
5742, 56sseldd 3569 . . 3 (𝜑 → 0 ∈ ℝ*)
5825a1i 11 . . . . 5 (𝜑𝐺 ∈ CMnd)
59 xrge0gsumle.b . . . . . . 7 (𝜑𝐵 ∈ (𝒫 𝐴 ∩ Fin))
60 elfpw 8151 . . . . . . . 8 (𝐵 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝐵𝐴𝐵 ∈ Fin))
6160simprbi 479 . . . . . . 7 (𝐵 ∈ (𝒫 𝐴 ∩ Fin) → 𝐵 ∈ Fin)
6259, 61syl 17 . . . . . 6 (𝜑𝐵 ∈ Fin)
63 diffi 8077 . . . . . 6 (𝐵 ∈ Fin → (𝐵𝐶) ∈ Fin)
6462, 63syl 17 . . . . 5 (𝜑 → (𝐵𝐶) ∈ Fin)
6560simplbi 475 . . . . . . . 8 (𝐵 ∈ (𝒫 𝐴 ∩ Fin) → 𝐵𝐴)
6659, 65syl 17 . . . . . . 7 (𝜑𝐵𝐴)
6766ssdifssd 3710 . . . . . 6 (𝜑 → (𝐵𝐶) ⊆ 𝐴)
6830, 67fssresd 5984 . . . . 5 (𝜑 → (𝐹 ↾ (𝐵𝐶)):(𝐵𝐶)⟶(0[,]+∞))
6934a1i 11 . . . . . 6 (𝜑 → 0 ∈ V)
7068, 64, 69fdmfifsupp 8168 . . . . 5 (𝜑 → (𝐹 ↾ (𝐵𝐶)) finSupp 0)
715, 23, 58, 64, 68, 70gsumcl 18139 . . . 4 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ (0[,]+∞))
721, 71sseldi 3566 . . 3 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ ℝ*)
73 xrge0gsumle.c . . . . . 6 (𝜑𝐶𝐵)
74 ssfi 8065 . . . . . 6 ((𝐵 ∈ Fin ∧ 𝐶𝐵) → 𝐶 ∈ Fin)
7562, 73, 74syl2anc 691 . . . . 5 (𝜑𝐶 ∈ Fin)
7673, 66sstrd 3578 . . . . . 6 (𝜑𝐶𝐴)
7730, 76fssresd 5984 . . . . 5 (𝜑 → (𝐹𝐶):𝐶⟶(0[,]+∞))
7877, 75, 69fdmfifsupp 8168 . . . . 5 (𝜑 → (𝐹𝐶) finSupp 0)
795, 23, 58, 75, 77, 78gsumcl 18139 . . . 4 (𝜑 → (𝐺 Σg (𝐹𝐶)) ∈ (0[,]+∞))
801, 79sseldi 3566 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐶)) ∈ ℝ*)
81 elxrge0 12152 . . . . 5 ((𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ (0[,]+∞) ↔ ((𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ ℝ* ∧ 0 ≤ (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))))
8281simprbi 479 . . . 4 ((𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ (0[,]+∞) → 0 ≤ (𝐺 Σg (𝐹 ↾ (𝐵𝐶))))
8371, 82syl 17 . . 3 (𝜑 → 0 ≤ (𝐺 Σg (𝐹 ↾ (𝐵𝐶))))
84 xleadd2a 11956 . . 3 (((0 ∈ ℝ* ∧ (𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ ℝ* ∧ (𝐺 Σg (𝐹𝐶)) ∈ ℝ*) ∧ 0 ≤ (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))) → ((𝐺 Σg (𝐹𝐶)) +𝑒 0) ≤ ((𝐺 Σg (𝐹𝐶)) +𝑒 (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))))
8557, 72, 80, 83, 84syl31anc 1321 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐶)) +𝑒 0) ≤ ((𝐺 Σg (𝐹𝐶)) +𝑒 (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))))
86 xaddid1 11946 . . 3 ((𝐺 Σg (𝐹𝐶)) ∈ ℝ* → ((𝐺 Σg (𝐹𝐶)) +𝑒 0) = (𝐺 Σg (𝐹𝐶)))
8780, 86syl 17 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐶)) +𝑒 0) = (𝐺 Σg (𝐹𝐶)))
88 ovex 6577 . . . . 5 (0[,]+∞) ∈ V
89 xrsadd 19582 . . . . . 6 +𝑒 = (+g‘ℝ*𝑠)
902, 89ressplusg 15818 . . . . 5 ((0[,]+∞) ∈ V → +𝑒 = (+g𝐺))
9188, 90ax-mp 5 . . . 4 +𝑒 = (+g𝐺)
9230, 66fssresd 5984 . . . 4 (𝜑 → (𝐹𝐵):𝐵⟶(0[,]+∞))
9392, 62, 69fdmfifsupp 8168 . . . 4 (𝜑 → (𝐹𝐵) finSupp 0)
94 disjdif 3992 . . . . 5 (𝐶 ∩ (𝐵𝐶)) = ∅
9594a1i 11 . . . 4 (𝜑 → (𝐶 ∩ (𝐵𝐶)) = ∅)
96 undif2 3996 . . . . 5 (𝐶 ∪ (𝐵𝐶)) = (𝐶𝐵)
97 ssequn1 3745 . . . . . 6 (𝐶𝐵 ↔ (𝐶𝐵) = 𝐵)
9873, 97sylib 207 . . . . 5 (𝜑 → (𝐶𝐵) = 𝐵)
9996, 98syl5req 2657 . . . 4 (𝜑𝐵 = (𝐶 ∪ (𝐵𝐶)))
1005, 23, 91, 58, 59, 92, 93, 95, 99gsumsplit 18151 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐵)) = ((𝐺 Σg ((𝐹𝐵) ↾ 𝐶)) +𝑒 (𝐺 Σg ((𝐹𝐵) ↾ (𝐵𝐶)))))
10173resabs1d 5348 . . . . 5 (𝜑 → ((𝐹𝐵) ↾ 𝐶) = (𝐹𝐶))
102101oveq2d 6565 . . . 4 (𝜑 → (𝐺 Σg ((𝐹𝐵) ↾ 𝐶)) = (𝐺 Σg (𝐹𝐶)))
103 difss 3699 . . . . . 6 (𝐵𝐶) ⊆ 𝐵
104 resabs1 5347 . . . . . 6 ((𝐵𝐶) ⊆ 𝐵 → ((𝐹𝐵) ↾ (𝐵𝐶)) = (𝐹 ↾ (𝐵𝐶)))
105103, 104mp1i 13 . . . . 5 (𝜑 → ((𝐹𝐵) ↾ (𝐵𝐶)) = (𝐹 ↾ (𝐵𝐶)))
106105oveq2d 6565 . . . 4 (𝜑 → (𝐺 Σg ((𝐹𝐵) ↾ (𝐵𝐶))) = (𝐺 Σg (𝐹 ↾ (𝐵𝐶))))
107102, 106oveq12d 6567 . . 3 (𝜑 → ((𝐺 Σg ((𝐹𝐵) ↾ 𝐶)) +𝑒 (𝐺 Σg ((𝐹𝐵) ↾ (𝐵𝐶)))) = ((𝐺 Σg (𝐹𝐶)) +𝑒 (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))))
108100, 107eqtr2d 2645 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐶)) +𝑒 (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))) = (𝐺 Σg (𝐹𝐵)))
10985, 87, 1083brtr3d 4614 1 (𝜑 → (𝐺 Σg (𝐹𝐶)) ≤ (𝐺 Σg (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  cmpt 4643  ran crn 5039  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  0cc0 9815  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952  cle 9954   +𝑒 cxad 11820  [,]cicc 12049  Basecbs 15695  s cress 15696  +gcplusg 15768  0gc0g 15923   Σg cgsu 15924  *𝑠cxrs 15983  SubMndcsubmnd 17157  CMndccmn 18016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-xadd 11823  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-tset 15787  df-ple 15788  df-ds 15791  df-0g 15925  df-gsum 15926  df-xrs 15985  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-cntz 17573  df-cmn 18018
This theorem is referenced by:  xrge0tsms  22445  xrge0tsmsd  29116
  Copyright terms: Public domain W3C validator