Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpt1s Structured version   Visualization version   GIF version

Theorem elrnmpt1s 5294
 Description: Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
rnmpt.1 𝐹 = (𝑥𝐴𝐵)
elrnmpt1s.1 (𝑥 = 𝐷𝐵 = 𝐶)
Assertion
Ref Expression
elrnmpt1s ((𝐷𝐴𝐶𝑉) → 𝐶 ∈ ran 𝐹)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐴   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmpt1s
StepHypRef Expression
1 eqid 2610 . . 3 𝐶 = 𝐶
2 elrnmpt1s.1 . . . . 5 (𝑥 = 𝐷𝐵 = 𝐶)
32eqeq2d 2620 . . . 4 (𝑥 = 𝐷 → (𝐶 = 𝐵𝐶 = 𝐶))
43rspcev 3282 . . 3 ((𝐷𝐴𝐶 = 𝐶) → ∃𝑥𝐴 𝐶 = 𝐵)
51, 4mpan2 703 . 2 (𝐷𝐴 → ∃𝑥𝐴 𝐶 = 𝐵)
6 rnmpt.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
76elrnmpt 5293 . . 3 (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
87biimparc 503 . 2 ((∃𝑥𝐴 𝐶 = 𝐵𝐶𝑉) → 𝐶 ∈ ran 𝐹)
95, 8sylan 487 1 ((𝐷𝐴𝐶𝑉) → 𝐶 ∈ ran 𝐹)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∃wrex 2897   ↦ cmpt 4643  ran crn 5039 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-mpt 4645  df-cnv 5046  df-dm 5048  df-rn 5049 This theorem is referenced by:  wunex2  9439  dfod2  17804  dprd2dlem1  18263  dprd2da  18264  ordtbaslem  20802  subgntr  21720  opnsubg  21721  tgpconcomp  21726  tsmsxplem1  21766  xrge0gsumle  22444  xrge0tsms  22445  minveclem3b  23007  minveclem3  23008  minveclem4  23011  efsubm  24101  dchrisum0fno1  25000  xrge0tsmsd  29116  esumcvg  29475  esum2d  29482  msubco  30682  sge0xaddlem1  39326
 Copyright terms: Public domain W3C validator