Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0cmn Structured version   Visualization version   GIF version

Theorem xrge0cmn 19607
 Description: The nonnegative extended real numbers are a monoid. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
xrge0cmn (ℝ*𝑠s (0[,]+∞)) ∈ CMnd

Proof of Theorem xrge0cmn
StepHypRef Expression
1 eqid 2610 . . 3 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
21xrs1cmn 19605 . 2 (ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ CMnd
31xrge0subm 19606 . . 3 (0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
4 xrex 11705 . . . . . . 7 * ∈ V
5 difss 3699 . . . . . . 7 (ℝ* ∖ {-∞}) ⊆ ℝ*
64, 5ssexi 4731 . . . . . 6 (ℝ* ∖ {-∞}) ∈ V
7 xrsbas 19581 . . . . . . . . . 10 * = (Base‘ℝ*𝑠)
81, 7ressbas2 15758 . . . . . . . . 9 ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞}))))
95, 8ax-mp 5 . . . . . . . 8 (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
109submss 17173 . . . . . . 7 ((0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞}))) → (0[,]+∞) ⊆ (ℝ* ∖ {-∞}))
113, 10ax-mp 5 . . . . . 6 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
12 ressabs 15766 . . . . . 6 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ⊆ (ℝ* ∖ {-∞})) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞)))
136, 11, 12mp2an 704 . . . . 5 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
1413eqcomi 2619 . . . 4 (ℝ*𝑠s (0[,]+∞)) = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
1514submmnd 17177 . . 3 ((0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞}))) → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
163, 15ax-mp 5 . 2 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
1714subcmn 18065 . 2 (((ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ CMnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
182, 16, 17mp2an 704 1 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  {csn 4125  ‘cfv 5804  (class class class)co 6549  0cc0 9815  +∞cpnf 9950  -∞cmnf 9951  ℝ*cxr 9952  [,]cicc 12049  Basecbs 15695   ↾s cress 15696  ℝ*𝑠cxrs 15983  Mndcmnd 17117  SubMndcsubmnd 17157  CMndccmn 18016 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-xadd 11823  df-icc 12053  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-tset 15787  df-ple 15788  df-ds 15791  df-0g 15925  df-xrs 15985  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-cmn 18018 This theorem is referenced by:  xrge0gsumle  22444  xrge0tsms  22445  xrge00  29017  xrge0omnd  29042  xrge0tsmsd  29116  xrge0slmod  29175  xrge0iifmhm  29313  xrge0tmdOLD  29319  esumcl  29419  esumgsum  29434  esum0  29438  esumf1o  29439  esumsplit  29442  esumadd  29446  gsumesum  29448  esumlub  29449  esumaddf  29450  esumsnf  29453  esumss  29461  esumpfinval  29464  esumpfinvalf  29465  esumcocn  29469  esum2d  29482  sitmcl  29740  gsumge0cl  39264  sge0tsms  39273
 Copyright terms: Public domain W3C validator