MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdeglem4 Structured version   Visualization version   GIF version

Theorem tdeglem4 23624
Description: There is only one multi-index with total degree 0. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
tdeglem.a 𝐴 = {𝑚 ∈ (ℕ0𝑚 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
tdeglem.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
tdeglem4 ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
Distinct variable groups:   𝐴,   ,𝐼,𝑚   ,𝑉   ,𝑋,𝑚
Allowed substitution hints:   𝐴(𝑚)   𝐻(,𝑚)   𝑉(𝑚)

Proof of Theorem tdeglem4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexnal 2978 . . . . 5 (∃𝑥𝐼 ¬ (𝑋𝑥) = 0 ↔ ¬ ∀𝑥𝐼 (𝑋𝑥) = 0)
2 df-ne 2782 . . . . . . 7 ((𝑋𝑥) ≠ 0 ↔ ¬ (𝑋𝑥) = 0)
3 oveq2 6557 . . . . . . . . . . . 12 ( = 𝑋 → (ℂfld Σg ) = (ℂfld Σg 𝑋))
4 tdeglem.h . . . . . . . . . . . 12 𝐻 = (𝐴 ↦ (ℂfld Σg ))
5 ovex 6577 . . . . . . . . . . . 12 (ℂfld Σg 𝑋) ∈ V
63, 4, 5fvmpt 6191 . . . . . . . . . . 11 (𝑋𝐴 → (𝐻𝑋) = (ℂfld Σg 𝑋))
76ad2antlr 759 . . . . . . . . . 10 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) = (ℂfld Σg 𝑋))
8 tdeglem.a . . . . . . . . . . . . . 14 𝐴 = {𝑚 ∈ (ℕ0𝑚 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
98psrbagf 19186 . . . . . . . . . . . . 13 ((𝐼𝑉𝑋𝐴) → 𝑋:𝐼⟶ℕ0)
109feqmptd 6159 . . . . . . . . . . . 12 ((𝐼𝑉𝑋𝐴) → 𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
1110adantr 480 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
1211oveq2d 6565 . . . . . . . . . 10 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg 𝑋) = (ℂfld Σg (𝑦𝐼 ↦ (𝑋𝑦))))
13 cnfldbas 19571 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
14 cnfld0 19589 . . . . . . . . . . 11 0 = (0g‘ℂfld)
15 cnfldadd 19572 . . . . . . . . . . 11 + = (+g‘ℂfld)
16 cnring 19587 . . . . . . . . . . . 12 fld ∈ Ring
17 ringcmn 18404 . . . . . . . . . . . 12 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
1816, 17mp1i 13 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℂfld ∈ CMnd)
19 simpll 786 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝐼𝑉)
209adantr 480 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋:𝐼⟶ℕ0)
2120ffvelrnda 6267 . . . . . . . . . . . 12 ((((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦𝐼) → (𝑋𝑦) ∈ ℕ0)
2221nn0cnd 11230 . . . . . . . . . . 11 ((((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦𝐼) → (𝑋𝑦) ∈ ℂ)
238psrbagfsupp 19330 . . . . . . . . . . . . . 14 ((𝑋𝐴𝐼𝑉) → 𝑋 finSupp 0)
2423ancoms 468 . . . . . . . . . . . . 13 ((𝐼𝑉𝑋𝐴) → 𝑋 finSupp 0)
2524adantr 480 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑋 finSupp 0)
2611, 25eqbrtrrd 4607 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0)
27 incom 3767 . . . . . . . . . . . . 13 ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ({𝑥} ∩ (𝐼 ∖ {𝑥}))
28 disjdif 3992 . . . . . . . . . . . . 13 ({𝑥} ∩ (𝐼 ∖ {𝑥})) = ∅
2927, 28eqtri 2632 . . . . . . . . . . . 12 ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ∅
3029a1i 11 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝐼 ∖ {𝑥}) ∩ {𝑥}) = ∅)
31 difsnid 4282 . . . . . . . . . . . . 13 (𝑥𝐼 → ((𝐼 ∖ {𝑥}) ∪ {𝑥}) = 𝐼)
3231eqcomd 2616 . . . . . . . . . . . 12 (𝑥𝐼𝐼 = ((𝐼 ∖ {𝑥}) ∪ {𝑥}))
3332ad2antrl 760 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝐼 = ((𝐼 ∖ {𝑥}) ∪ {𝑥}))
3413, 14, 15, 18, 19, 22, 26, 30, 33gsumsplit2 18152 . . . . . . . . . 10 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦𝐼 ↦ (𝑋𝑦))) = ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))))
357, 12, 343eqtrd 2648 . . . . . . . . 9 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) = ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))))
36 difexg 4735 . . . . . . . . . . . . 13 (𝐼𝑉 → (𝐼 ∖ {𝑥}) ∈ V)
3736ad2antrr 758 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐼 ∖ {𝑥}) ∈ V)
38 nn0subm 19620 . . . . . . . . . . . . 13 0 ∈ (SubMnd‘ℂfld)
3938a1i 11 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℕ0 ∈ (SubMnd‘ℂfld))
40 eldifi 3694 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ {𝑥}) → 𝑦𝐼)
41 ffvelrn 6265 . . . . . . . . . . . . . 14 ((𝑋:𝐼⟶ℕ0𝑦𝐼) → (𝑋𝑦) ∈ ℕ0)
4220, 40, 41syl2an 493 . . . . . . . . . . . . 13 ((((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) ∧ 𝑦 ∈ (𝐼 ∖ {𝑥})) → (𝑋𝑦) ∈ ℕ0)
43 eqid 2610 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) = (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))
4442, 43fmptd 6292 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)):(𝐼 ∖ {𝑥})⟶ℕ0)
45 mptexg 6389 . . . . . . . . . . . . . . 15 ((𝐼 ∖ {𝑥}) ∈ V → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V)
4636, 45syl 17 . . . . . . . . . . . . . 14 (𝐼𝑉 → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V)
4746ad2antrr 758 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V)
48 funmpt 5840 . . . . . . . . . . . . . 14 Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))
4948a1i 11 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)))
50 funmpt 5840 . . . . . . . . . . . . . . 15 Fun (𝑦𝐼 ↦ (𝑋𝑦))
5150a1i 11 . . . . . . . . . . . . . 14 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → Fun (𝑦𝐼 ↦ (𝑋𝑦)))
52 difss 3699 . . . . . . . . . . . . . . . . 17 (𝐼 ∖ {𝑥}) ⊆ 𝐼
53 resmpt 5369 . . . . . . . . . . . . . . . . 17 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → ((𝑦𝐼 ↦ (𝑋𝑦)) ↾ (𝐼 ∖ {𝑥})) = (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)))
5452, 53ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝑦𝐼 ↦ (𝑋𝑦)) ↾ (𝐼 ∖ {𝑥})) = (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))
55 resss 5342 . . . . . . . . . . . . . . . 16 ((𝑦𝐼 ↦ (𝑋𝑦)) ↾ (𝐼 ∖ {𝑥})) ⊆ (𝑦𝐼 ↦ (𝑋𝑦))
5654, 55eqsstr3i 3599 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦))
5756a1i 11 . . . . . . . . . . . . . 14 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦)))
58 mptexg 6389 . . . . . . . . . . . . . . 15 (𝐼𝑉 → (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V)
5958ad2antrr 758 . . . . . . . . . . . . . 14 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V)
60 funsssuppss 7208 . . . . . . . . . . . . . 14 ((Fun (𝑦𝐼 ↦ (𝑋𝑦)) ∧ (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ⊆ (𝑦𝐼 ↦ (𝑋𝑦)) ∧ (𝑦𝐼 ↦ (𝑋𝑦)) ∈ V) → ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))
6151, 57, 59, 60syl3anc 1318 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))
62 fsuppsssupp 8174 . . . . . . . . . . . . 13 ((((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) ∈ V ∧ Fun (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∧ ((𝑦𝐼 ↦ (𝑋𝑦)) finSupp 0 ∧ ((𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) supp 0) ⊆ ((𝑦𝐼 ↦ (𝑋𝑦)) supp 0))) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) finSupp 0)
6347, 49, 26, 61, 62syl22anc 1319 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦)) finSupp 0)
6414, 18, 37, 39, 44, 63gsumsubmcl 18142 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∈ ℕ0)
65 ringmnd 18379 . . . . . . . . . . . . . 14 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
6616, 65mp1i 13 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ℂfld ∈ Mnd)
67 simprl 790 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → 𝑥𝐼)
6820, 67ffvelrnd 6268 . . . . . . . . . . . . . 14 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℕ0)
6968nn0cnd 11230 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℂ)
70 fveq2 6103 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑋𝑦) = (𝑋𝑥))
7113, 70gsumsn 18177 . . . . . . . . . . . . 13 ((ℂfld ∈ Mnd ∧ 𝑥𝐼 ∧ (𝑋𝑥) ∈ ℂ) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) = (𝑋𝑥))
7266, 67, 69, 71syl3anc 1318 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) = (𝑋𝑥))
73 simprr 792 . . . . . . . . . . . . . 14 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ≠ 0)
7473, 2sylib 207 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ¬ (𝑋𝑥) = 0)
75 elnn0 11171 . . . . . . . . . . . . . 14 ((𝑋𝑥) ∈ ℕ0 ↔ ((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0))
7668, 75sylib 207 . . . . . . . . . . . . 13 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0))
77 orel2 397 . . . . . . . . . . . . 13 (¬ (𝑋𝑥) = 0 → (((𝑋𝑥) ∈ ℕ ∨ (𝑋𝑥) = 0) → (𝑋𝑥) ∈ ℕ))
7874, 76, 77sylc 63 . . . . . . . . . . . 12 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝑋𝑥) ∈ ℕ)
7972, 78eqeltrd 2688 . . . . . . . . . . 11 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) ∈ ℕ)
80 nn0nnaddcl 11201 . . . . . . . . . . 11 (((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) ∈ ℕ0 ∧ (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦))) ∈ ℕ) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ∈ ℕ)
8164, 79, 80syl2anc 691 . . . . . . . . . 10 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ∈ ℕ)
8281nnne0d 10942 . . . . . . . . 9 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → ((ℂfld Σg (𝑦 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑋𝑦))) + (ℂfld Σg (𝑦 ∈ {𝑥} ↦ (𝑋𝑦)))) ≠ 0)
8335, 82eqnetrd 2849 . . . . . . . 8 (((𝐼𝑉𝑋𝐴) ∧ (𝑥𝐼 ∧ (𝑋𝑥) ≠ 0)) → (𝐻𝑋) ≠ 0)
8483expr 641 . . . . . . 7 (((𝐼𝑉𝑋𝐴) ∧ 𝑥𝐼) → ((𝑋𝑥) ≠ 0 → (𝐻𝑋) ≠ 0))
852, 84syl5bir 232 . . . . . 6 (((𝐼𝑉𝑋𝐴) ∧ 𝑥𝐼) → (¬ (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
8685rexlimdva 3013 . . . . 5 ((𝐼𝑉𝑋𝐴) → (∃𝑥𝐼 ¬ (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
871, 86syl5bir 232 . . . 4 ((𝐼𝑉𝑋𝐴) → (¬ ∀𝑥𝐼 (𝑋𝑥) = 0 → (𝐻𝑋) ≠ 0))
8887necon4bd 2802 . . 3 ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 → ∀𝑥𝐼 (𝑋𝑥) = 0))
89 ffn 5958 . . . . . 6 (𝑋:𝐼⟶ℕ0𝑋 Fn 𝐼)
909, 89syl 17 . . . . 5 ((𝐼𝑉𝑋𝐴) → 𝑋 Fn 𝐼)
91 0nn0 11184 . . . . . 6 0 ∈ ℕ0
92 fnconstg 6006 . . . . . 6 (0 ∈ ℕ0 → (𝐼 × {0}) Fn 𝐼)
9391, 92mp1i 13 . . . . 5 ((𝐼𝑉𝑋𝐴) → (𝐼 × {0}) Fn 𝐼)
94 eqfnfv 6219 . . . . 5 ((𝑋 Fn 𝐼 ∧ (𝐼 × {0}) Fn 𝐼) → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥)))
9590, 93, 94syl2anc 691 . . . 4 ((𝐼𝑉𝑋𝐴) → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥)))
96 c0ex 9913 . . . . . . 7 0 ∈ V
9796fvconst2 6374 . . . . . 6 (𝑥𝐼 → ((𝐼 × {0})‘𝑥) = 0)
9897eqeq2d 2620 . . . . 5 (𝑥𝐼 → ((𝑋𝑥) = ((𝐼 × {0})‘𝑥) ↔ (𝑋𝑥) = 0))
9998ralbiia 2962 . . . 4 (∀𝑥𝐼 (𝑋𝑥) = ((𝐼 × {0})‘𝑥) ↔ ∀𝑥𝐼 (𝑋𝑥) = 0)
10095, 99syl6bb 275 . . 3 ((𝐼𝑉𝑋𝐴) → (𝑋 = (𝐼 × {0}) ↔ ∀𝑥𝐼 (𝑋𝑥) = 0))
10188, 100sylibrd 248 . 2 ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 → 𝑋 = (𝐼 × {0})))
1028psrbag0 19315 . . . . . 6 (𝐼𝑉 → (𝐼 × {0}) ∈ 𝐴)
103102adantr 480 . . . . 5 ((𝐼𝑉𝑋𝐴) → (𝐼 × {0}) ∈ 𝐴)
104 oveq2 6557 . . . . . 6 ( = (𝐼 × {0}) → (ℂfld Σg ) = (ℂfld Σg (𝐼 × {0})))
105 ovex 6577 . . . . . 6 (ℂfld Σg (𝐼 × {0})) ∈ V
106104, 4, 105fvmpt 6191 . . . . 5 ((𝐼 × {0}) ∈ 𝐴 → (𝐻‘(𝐼 × {0})) = (ℂfld Σg (𝐼 × {0})))
107103, 106syl 17 . . . 4 ((𝐼𝑉𝑋𝐴) → (𝐻‘(𝐼 × {0})) = (ℂfld Σg (𝐼 × {0})))
108 fconstmpt 5085 . . . . . 6 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
109108oveq2i 6560 . . . . 5 (ℂfld Σg (𝐼 × {0})) = (ℂfld Σg (𝑥𝐼 ↦ 0))
11016, 65ax-mp 5 . . . . . . 7 fld ∈ Mnd
11114gsumz 17197 . . . . . . 7 ((ℂfld ∈ Mnd ∧ 𝐼𝑉) → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
112110, 111mpan 702 . . . . . 6 (𝐼𝑉 → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
113112adantr 480 . . . . 5 ((𝐼𝑉𝑋𝐴) → (ℂfld Σg (𝑥𝐼 ↦ 0)) = 0)
114109, 113syl5eq 2656 . . . 4 ((𝐼𝑉𝑋𝐴) → (ℂfld Σg (𝐼 × {0})) = 0)
115107, 114eqtrd 2644 . . 3 ((𝐼𝑉𝑋𝐴) → (𝐻‘(𝐼 × {0})) = 0)
116 fveq2 6103 . . . 4 (𝑋 = (𝐼 × {0}) → (𝐻𝑋) = (𝐻‘(𝐼 × {0})))
117116eqeq1d 2612 . . 3 (𝑋 = (𝐼 × {0}) → ((𝐻𝑋) = 0 ↔ (𝐻‘(𝐼 × {0})) = 0))
118115, 117syl5ibrcom 236 . 2 ((𝐼𝑉𝑋𝐴) → (𝑋 = (𝐼 × {0}) → (𝐻𝑋) = 0))
119101, 118impbid 201 1 ((𝐼𝑉𝑋𝐴) → ((𝐻𝑋) = 0 ↔ 𝑋 = (𝐼 × {0})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125   class class class wbr 4583  cmpt 4643   × cxp 5036  ccnv 5037  cres 5040  cima 5041  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549   supp csupp 7182  𝑚 cmap 7744  Fincfn 7841   finSupp cfsupp 8158  cc 9813  0cc0 9815   + caddc 9818  cn 10897  0cn0 11169   Σg cgsu 15924  Mndcmnd 17117  SubMndcsubmnd 17157  CMndccmn 18016  Ringcrg 18370  fldccnfld 19567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-cnfld 19568
This theorem is referenced by:  mdegle0  23641
  Copyright terms: Public domain W3C validator