MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdeglem4 Structured version   Visualization version   Unicode version

Theorem tdeglem4 23058
Description: There is only one multi-index with total degree 0. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
tdeglem.a  |-  A  =  { m  e.  ( NN0  ^m  I )  |  ( `' m " NN )  e.  Fin }
tdeglem.h  |-  H  =  ( h  e.  A  |->  (fld 
gsumg  h ) )
Assertion
Ref Expression
tdeglem4  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( ( H `  X )  =  0  <-> 
X  =  ( I  X.  { 0 } ) ) )
Distinct variable groups:    A, h    h, I, m    h, V   
h, X, m
Allowed substitution hints:    A( m)    H( h, m)    V( m)

Proof of Theorem tdeglem4
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexnal 2848 . . . . 5  |-  ( E. x  e.  I  -.  ( X `  x )  =  0  <->  -.  A. x  e.  I  ( X `  x )  =  0 )
2 df-ne 2635 . . . . . . 7  |-  ( ( X `  x )  =/=  0  <->  -.  ( X `  x )  =  0 )
3 oveq2 6323 . . . . . . . . . . . 12  |-  ( h  =  X  ->  (fld  gsumg  h )  =  (fld  gsumg  X ) )
4 tdeglem.h . . . . . . . . . . . 12  |-  H  =  ( h  e.  A  |->  (fld 
gsumg  h ) )
5 ovex 6343 . . . . . . . . . . . 12  |-  (fld  gsumg  X )  e.  _V
63, 4, 5fvmpt 5971 . . . . . . . . . . 11  |-  ( X  e.  A  ->  ( H `  X )  =  (fld 
gsumg  X ) )
76ad2antlr 738 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( H `  X
)  =  (fld  gsumg  X ) )
8 tdeglem.a . . . . . . . . . . . . . 14  |-  A  =  { m  e.  ( NN0  ^m  I )  |  ( `' m " NN )  e.  Fin }
98psrbagf 18638 . . . . . . . . . . . . 13  |-  ( ( I  e.  V  /\  X  e.  A )  ->  X : I --> NN0 )
109feqmptd 5941 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  X  e.  A )  ->  X  =  ( y  e.  I  |->  ( X `
 y ) ) )
1110adantr 471 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->  X  =  ( y  e.  I  |->  ( X `
 y ) ) )
1211oveq2d 6331 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
(fld  gsumg  X )  =  (fld  gsumg  ( y  e.  I  |->  ( X `  y
) ) ) )
13 cnfldbas 19023 . . . . . . . . . . 11  |-  CC  =  ( Base ` fld )
14 cnfld0 19041 . . . . . . . . . . 11  |-  0  =  ( 0g ` fld )
15 cnfldadd 19024 . . . . . . . . . . 11  |-  +  =  ( +g  ` fld )
16 cnring 19039 . . . . . . . . . . . 12  |-fld  e.  Ring
17 ringcmn 17860 . . . . . . . . . . . 12  |-  (fld  e.  Ring  ->fld  e. CMnd )
1816, 17mp1i 13 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->fld  e. CMnd )
19 simpll 765 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->  I  e.  V )
209adantr 471 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->  X : I --> NN0 )
2120ffvelrnda 6045 . . . . . . . . . . . 12  |-  ( ( ( ( I  e.  V  /\  X  e.  A )  /\  (
x  e.  I  /\  ( X `  x )  =/=  0 ) )  /\  y  e.  I
)  ->  ( X `  y )  e.  NN0 )
2221nn0cnd 10956 . . . . . . . . . . 11  |-  ( ( ( ( I  e.  V  /\  X  e.  A )  /\  (
x  e.  I  /\  ( X `  x )  =/=  0 ) )  /\  y  e.  I
)  ->  ( X `  y )  e.  CC )
238psrbagfsupp 18781 . . . . . . . . . . . . . 14  |-  ( ( X  e.  A  /\  I  e.  V )  ->  X finSupp  0 )
2423ancoms 459 . . . . . . . . . . . . 13  |-  ( ( I  e.  V  /\  X  e.  A )  ->  X finSupp  0 )
2524adantr 471 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->  X finSupp  0 )
2611, 25eqbrtrrd 4439 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( y  e.  I  |->  ( X `  y
) ) finSupp  0 )
27 incom 3637 . . . . . . . . . . . . 13  |-  ( ( I  \  { x } )  i^i  {
x } )  =  ( { x }  i^i  ( I  \  {
x } ) )
28 disjdif 3851 . . . . . . . . . . . . 13  |-  ( { x }  i^i  (
I  \  { x } ) )  =  (/)
2927, 28eqtri 2484 . . . . . . . . . . . 12  |-  ( ( I  \  { x } )  i^i  {
x } )  =  (/)
3029a1i 11 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( ( I  \  { x } )  i^i  { x }
)  =  (/) )
31 difsnid 4131 . . . . . . . . . . . . 13  |-  ( x  e.  I  ->  (
( I  \  {
x } )  u. 
{ x } )  =  I )
3231eqcomd 2468 . . . . . . . . . . . 12  |-  ( x  e.  I  ->  I  =  ( ( I 
\  { x }
)  u.  { x } ) )
3332ad2antrl 739 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->  I  =  ( (
I  \  { x } )  u.  {
x } ) )
3413, 14, 15, 18, 19, 22, 26, 30, 33gsumsplit2 17611 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
(fld  gsumg  ( y  e.  I  |->  ( X `  y ) ) )  =  ( (fld 
gsumg  ( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) )  +  (fld  gsumg  ( y  e.  {
x }  |->  ( X `
 y ) ) ) ) )
357, 12, 343eqtrd 2500 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( H `  X
)  =  ( (fld  gsumg  ( y  e.  ( I  \  { x } ) 
|->  ( X `  y
) ) )  +  (fld 
gsumg  ( y  e.  {
x }  |->  ( X `
 y ) ) ) ) )
36 difexg 4565 . . . . . . . . . . . . 13  |-  ( I  e.  V  ->  (
I  \  { x } )  e.  _V )
3736ad2antrr 737 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( I  \  {
x } )  e. 
_V )
38 nn0subm 19072 . . . . . . . . . . . . 13  |-  NN0  e.  (SubMnd ` fld )
3938a1i 11 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->  NN0  e.  (SubMnd ` fld ) )
40 eldifi 3567 . . . . . . . . . . . . . 14  |-  ( y  e.  ( I  \  { x } )  ->  y  e.  I
)
41 ffvelrn 6043 . . . . . . . . . . . . . 14  |-  ( ( X : I --> NN0  /\  y  e.  I )  ->  ( X `  y
)  e.  NN0 )
4220, 40, 41syl2an 484 . . . . . . . . . . . . 13  |-  ( ( ( ( I  e.  V  /\  X  e.  A )  /\  (
x  e.  I  /\  ( X `  x )  =/=  0 ) )  /\  y  e.  ( I  \  { x } ) )  -> 
( X `  y
)  e.  NN0 )
43 eqid 2462 . . . . . . . . . . . . 13  |-  ( y  e.  ( I  \  { x } ) 
|->  ( X `  y
) )  =  ( y  e.  ( I 
\  { x }
)  |->  ( X `  y ) )
4442, 43fmptd 6069 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) : ( I  \  { x } ) --> NN0 )
45 mptexg 6160 . . . . . . . . . . . . . . 15  |-  ( ( I  \  { x } )  e.  _V  ->  ( y  e.  ( I  \  { x } )  |->  ( X `
 y ) )  e.  _V )
4636, 45syl 17 . . . . . . . . . . . . . 14  |-  ( I  e.  V  ->  (
y  e.  ( I 
\  { x }
)  |->  ( X `  y ) )  e. 
_V )
4746ad2antrr 737 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( y  e.  ( I  \  { x } )  |->  ( X `
 y ) )  e.  _V )
48 funmpt 5637 . . . . . . . . . . . . . 14  |-  Fun  (
y  e.  ( I 
\  { x }
)  |->  ( X `  y ) )
4948a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->  Fun  ( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) )
50 funmpt 5637 . . . . . . . . . . . . . . 15  |-  Fun  (
y  e.  I  |->  ( X `  y ) )
5150a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->  Fun  ( y  e.  I  |->  ( X `  y
) ) )
52 difss 3572 . . . . . . . . . . . . . . . . 17  |-  ( I 
\  { x }
)  C_  I
53 resmpt 5173 . . . . . . . . . . . . . . . . 17  |-  ( ( I  \  { x } )  C_  I  ->  ( ( y  e.  I  |->  ( X `  y ) )  |`  ( I  \  { x } ) )  =  ( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) )
5452, 53ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  I  |->  ( X `  y ) )  |`  ( I  \  { x } ) )  =  ( y  e.  ( I  \  { x } ) 
|->  ( X `  y
) )
55 resss 5147 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  I  |->  ( X `  y ) )  |`  ( I  \  { x } ) )  C_  ( y  e.  I  |->  ( X `
 y ) )
5654, 55eqsstr3i 3475 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( I  \  { x } ) 
|->  ( X `  y
) )  C_  (
y  e.  I  |->  ( X `  y ) )
5756a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) 
C_  ( y  e.  I  |->  ( X `  y ) ) )
58 mptexg 6160 . . . . . . . . . . . . . . 15  |-  ( I  e.  V  ->  (
y  e.  I  |->  ( X `  y ) )  e.  _V )
5958ad2antrr 737 . . . . . . . . . . . . . 14  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( y  e.  I  |->  ( X `  y
) )  e.  _V )
60 funsssuppss 6968 . . . . . . . . . . . . . 14  |-  ( ( Fun  ( y  e.  I  |->  ( X `  y ) )  /\  ( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) 
C_  ( y  e.  I  |->  ( X `  y ) )  /\  ( y  e.  I  |->  ( X `  y
) )  e.  _V )  ->  ( ( y  e.  ( I  \  { x } ) 
|->  ( X `  y
) ) supp  0 ) 
C_  ( ( y  e.  I  |->  ( X `
 y ) ) supp  0 ) )
6151, 57, 59, 60syl3anc 1276 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( ( y  e.  ( I  \  {
x } )  |->  ( X `  y ) ) supp  0 )  C_  ( ( y  e.  I  |->  ( X `  y ) ) supp  0
) )
62 fsuppsssupp 7925 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e.  ( I  \  {
x } )  |->  ( X `  y ) )  e.  _V  /\  Fun  ( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) )  /\  ( ( y  e.  I  |->  ( X `  y ) ) finSupp  0  /\  (
( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) supp  0 )  C_  (
( y  e.  I  |->  ( X `  y
) ) supp  0 ) ) )  ->  (
y  e.  ( I 
\  { x }
)  |->  ( X `  y ) ) finSupp  0
)
6347, 49, 26, 61, 62syl22anc 1277 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) finSupp 
0 )
6414, 18, 37, 39, 44, 63gsumsubmcl 17601 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
(fld  gsumg  ( y  e.  ( I 
\  { x }
)  |->  ( X `  y ) ) )  e.  NN0 )
65 ringmnd 17838 . . . . . . . . . . . . . 14  |-  (fld  e.  Ring  ->fld  e.  Mnd )
6616, 65mp1i 13 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->fld  e.  Mnd )
67 simprl 769 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->  x  e.  I )
6820, 67ffvelrnd 6046 . . . . . . . . . . . . . 14  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( X `  x
)  e.  NN0 )
6968nn0cnd 10956 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( X `  x
)  e.  CC )
70 fveq2 5888 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  ( X `  y )  =  ( X `  x ) )
7113, 70gsumsn 17636 . . . . . . . . . . . . 13  |-  ( (fld  e. 
Mnd  /\  x  e.  I  /\  ( X `  x )  e.  CC )  ->  (fld 
gsumg  ( y  e.  {
x }  |->  ( X `
 y ) ) )  =  ( X `
 x ) )
7266, 67, 69, 71syl3anc 1276 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
(fld  gsumg  ( y  e.  { x }  |->  ( X `  y ) ) )  =  ( X `  x ) )
73 simprr 771 . . . . . . . . . . . . . 14  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( X `  x
)  =/=  0 )
7473, 2sylib 201 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->  -.  ( X `  x
)  =  0 )
75 elnn0 10900 . . . . . . . . . . . . . 14  |-  ( ( X `  x )  e.  NN0  <->  ( ( X `
 x )  e.  NN  \/  ( X `
 x )  =  0 ) )
7668, 75sylib 201 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( ( X `  x )  e.  NN  \/  ( X `  x
)  =  0 ) )
77 orel2 389 . . . . . . . . . . . . 13  |-  ( -.  ( X `  x
)  =  0  -> 
( ( ( X `
 x )  e.  NN  \/  ( X `
 x )  =  0 )  ->  ( X `  x )  e.  NN ) )
7874, 76, 77sylc 62 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( X `  x
)  e.  NN )
7972, 78eqeltrd 2540 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
(fld  gsumg  ( y  e.  { x }  |->  ( X `  y ) ) )  e.  NN )
80 nn0nnaddcl 10930 . . . . . . . . . . 11  |-  ( ( (fld 
gsumg  ( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) )  e.  NN0  /\  (fld  gsumg  (
y  e.  { x }  |->  ( X `  y ) ) )  e.  NN )  -> 
( (fld 
gsumg  ( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) )  +  (fld  gsumg  ( y  e.  {
x }  |->  ( X `
 y ) ) ) )  e.  NN )
8164, 79, 80syl2anc 671 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( (fld 
gsumg  ( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) )  +  (fld  gsumg  ( y  e.  {
x }  |->  ( X `
 y ) ) ) )  e.  NN )
8281nnne0d 10682 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( (fld 
gsumg  ( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) )  +  (fld  gsumg  ( y  e.  {
x }  |->  ( X `
 y ) ) ) )  =/=  0
)
8335, 82eqnetrd 2703 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( H `  X
)  =/=  0 )
8483expr 624 . . . . . . 7  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  x  e.  I )  ->  (
( X `  x
)  =/=  0  -> 
( H `  X
)  =/=  0 ) )
852, 84syl5bir 226 . . . . . 6  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  x  e.  I )  ->  ( -.  ( X `  x
)  =  0  -> 
( H `  X
)  =/=  0 ) )
8685rexlimdva 2891 . . . . 5  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( E. x  e.  I  -.  ( X `
 x )  =  0  ->  ( H `  X )  =/=  0
) )
871, 86syl5bir 226 . . . 4  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( -.  A. x  e.  I  ( X `  x )  =  0  ->  ( H `  X )  =/=  0
) )
8887necon4bd 2656 . . 3  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( ( H `  X )  =  0  ->  A. x  e.  I 
( X `  x
)  =  0 ) )
89 ffn 5751 . . . . . 6  |-  ( X : I --> NN0  ->  X  Fn  I )
909, 89syl 17 . . . . 5  |-  ( ( I  e.  V  /\  X  e.  A )  ->  X  Fn  I )
91 0nn0 10913 . . . . . 6  |-  0  e.  NN0
92 fnconstg 5794 . . . . . 6  |-  ( 0  e.  NN0  ->  ( I  X.  { 0 } )  Fn  I )
9391, 92mp1i 13 . . . . 5  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( I  X.  {
0 } )  Fn  I )
94 eqfnfv 5999 . . . . 5  |-  ( ( X  Fn  I  /\  ( I  X.  { 0 } )  Fn  I
)  ->  ( X  =  ( I  X.  { 0 } )  <->  A. x  e.  I 
( X `  x
)  =  ( ( I  X.  { 0 } ) `  x
) ) )
9590, 93, 94syl2anc 671 . . . 4  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( X  =  ( I  X.  { 0 } )  <->  A. x  e.  I  ( X `  x )  =  ( ( I  X.  {
0 } ) `  x ) ) )
96 c0ex 9663 . . . . . . 7  |-  0  e.  _V
9796fvconst2 6144 . . . . . 6  |-  ( x  e.  I  ->  (
( I  X.  {
0 } ) `  x )  =  0 )
9897eqeq2d 2472 . . . . 5  |-  ( x  e.  I  ->  (
( X `  x
)  =  ( ( I  X.  { 0 } ) `  x
)  <->  ( X `  x )  =  0 ) )
9998ralbiia 2830 . . . 4  |-  ( A. x  e.  I  ( X `  x )  =  ( ( I  X.  { 0 } ) `  x )  <->  A. x  e.  I 
( X `  x
)  =  0 )
10095, 99syl6bb 269 . . 3  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( X  =  ( I  X.  { 0 } )  <->  A. x  e.  I  ( X `  x )  =  0 ) )
10188, 100sylibrd 242 . 2  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( ( H `  X )  =  0  ->  X  =  ( I  X.  { 0 } ) ) )
1028psrbag0 18766 . . . . . 6  |-  ( I  e.  V  ->  (
I  X.  { 0 } )  e.  A
)
103102adantr 471 . . . . 5  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( I  X.  {
0 } )  e.  A )
104 oveq2 6323 . . . . . 6  |-  ( h  =  ( I  X.  { 0 } )  ->  (fld 
gsumg  h )  =  (fld  gsumg  ( I  X.  { 0 } ) ) )
105 ovex 6343 . . . . . 6  |-  (fld  gsumg  ( I  X.  {
0 } ) )  e.  _V
106104, 4, 105fvmpt 5971 . . . . 5  |-  ( ( I  X.  { 0 } )  e.  A  ->  ( H `  (
I  X.  { 0 } ) )  =  (fld 
gsumg  ( I  X.  { 0 } ) ) )
107103, 106syl 17 . . . 4  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( H `  (
I  X.  { 0 } ) )  =  (fld 
gsumg  ( I  X.  { 0 } ) ) )
108 fconstmpt 4897 . . . . . 6  |-  ( I  X.  { 0 } )  =  ( x  e.  I  |->  0 )
109108oveq2i 6326 . . . . 5  |-  (fld  gsumg  ( I  X.  {
0 } ) )  =  (fld 
gsumg  ( x  e.  I  |->  0 ) )
11016, 65ax-mp 5 . . . . . . 7  |-fld  e.  Mnd
11114gsumz 16670 . . . . . . 7  |-  ( (fld  e. 
Mnd  /\  I  e.  V )  ->  (fld  gsumg  ( x  e.  I  |->  0 ) )  =  0 )
112110, 111mpan 681 . . . . . 6  |-  ( I  e.  V  ->  (fld  gsumg  ( x  e.  I  |->  0 ) )  =  0 )
113112adantr 471 . . . . 5  |-  ( ( I  e.  V  /\  X  e.  A )  ->  (fld 
gsumg  ( x  e.  I  |->  0 ) )  =  0 )
114109, 113syl5eq 2508 . . . 4  |-  ( ( I  e.  V  /\  X  e.  A )  ->  (fld 
gsumg  ( I  X.  { 0 } ) )  =  0 )
115107, 114eqtrd 2496 . . 3  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( H `  (
I  X.  { 0 } ) )  =  0 )
116 fveq2 5888 . . . 4  |-  ( X  =  ( I  X.  { 0 } )  ->  ( H `  X )  =  ( H `  ( I  X.  { 0 } ) ) )
117116eqeq1d 2464 . . 3  |-  ( X  =  ( I  X.  { 0 } )  ->  ( ( H `
 X )  =  0  <->  ( H `  ( I  X.  { 0 } ) )  =  0 ) )
118115, 117syl5ibrcom 230 . 2  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( X  =  ( I  X.  { 0 } )  ->  ( H `  X )  =  0 ) )
119101, 118impbid 195 1  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( ( H `  X )  =  0  <-> 
X  =  ( I  X.  { 0 } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 374    /\ wa 375    = wceq 1455    e. wcel 1898    =/= wne 2633   A.wral 2749   E.wrex 2750   {crab 2753   _Vcvv 3057    \ cdif 3413    u. cun 3414    i^i cin 3415    C_ wss 3416   (/)c0 3743   {csn 3980   class class class wbr 4416    |-> cmpt 4475    X. cxp 4851   `'ccnv 4852    |` cres 4855   "cima 4856   Fun wfun 5595    Fn wfn 5596   -->wf 5597   ` cfv 5601  (class class class)co 6315   supp csupp 6941    ^m cmap 7498   Fincfn 7595   finSupp cfsupp 7909   CCcc 9563   0cc0 9565    + caddc 9568   NNcn 10637   NN0cn0 10898    gsumg cgsu 15388   Mndcmnd 16584  SubMndcsubmnd 16630  CMndccmn 17479   Ringcrg 17829  ℂfldccnfld 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-inf2 8172  ax-cnex 9621  ax-resscn 9622  ax-1cn 9623  ax-icn 9624  ax-addcl 9625  ax-addrcl 9626  ax-mulcl 9627  ax-mulrcl 9628  ax-mulcom 9629  ax-addass 9630  ax-mulass 9631  ax-distr 9632  ax-i2m1 9633  ax-1ne0 9634  ax-1rid 9635  ax-rnegex 9636  ax-rrecex 9637  ax-cnre 9638  ax-pre-lttri 9639  ax-pre-lttrn 9640  ax-pre-ltadd 9641  ax-pre-mulgt0 9642  ax-addf 9644  ax-mulf 9645
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-iin 4295  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-of 6558  df-om 6720  df-1st 6820  df-2nd 6821  df-supp 6942  df-wrecs 7054  df-recs 7116  df-rdg 7154  df-1o 7208  df-oadd 7212  df-er 7389  df-map 7500  df-en 7596  df-dom 7597  df-sdom 7598  df-fin 7599  df-fsupp 7910  df-oi 8051  df-card 8399  df-pnf 9703  df-mnf 9704  df-xr 9705  df-ltxr 9706  df-le 9707  df-sub 9888  df-neg 9889  df-nn 10638  df-2 10696  df-3 10697  df-4 10698  df-5 10699  df-6 10700  df-7 10701  df-8 10702  df-9 10703  df-10 10704  df-n0 10899  df-z 10967  df-dec 11081  df-uz 11189  df-fz 11814  df-fzo 11947  df-seq 12246  df-hash 12548  df-struct 15172  df-ndx 15173  df-slot 15174  df-base 15175  df-sets 15176  df-ress 15177  df-plusg 15252  df-mulr 15253  df-starv 15254  df-tset 15258  df-ple 15259  df-ds 15261  df-unif 15262  df-0g 15389  df-gsum 15390  df-mre 15541  df-mrc 15542  df-acs 15544  df-mgm 16537  df-sgrp 16576  df-mnd 16586  df-submnd 16632  df-grp 16722  df-minusg 16723  df-mulg 16725  df-cntz 17020  df-cmn 17481  df-abl 17482  df-mgp 17773  df-ur 17785  df-ring 17831  df-cring 17832  df-cnfld 19020
This theorem is referenced by:  mdegle0  23075
  Copyright terms: Public domain W3C validator