Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumsubmcl | Structured version Visualization version GIF version |
Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
Ref | Expression |
---|---|
gsumsubmcl.z | ⊢ 0 = (0g‘𝐺) |
gsumsubmcl.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumsubmcl.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumsubmcl.s | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) |
gsumsubmcl.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
gsumsubmcl.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
gsumsubmcl | ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsubmcl.z | . 2 ⊢ 0 = (0g‘𝐺) | |
2 | eqid 2610 | . 2 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
3 | gsumsubmcl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | cmnmnd 18031 | . . 3 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
6 | gsumsubmcl.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
7 | gsumsubmcl.s | . 2 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) | |
8 | gsumsubmcl.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
9 | eqid 2610 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
10 | 9 | submss 17173 | . . . . 5 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
11 | 7, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐺)) |
12 | 8, 11 | fssd 5970 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶(Base‘𝐺)) |
13 | 9, 2, 3, 12 | cntzcmnf 18071 | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹)) |
14 | gsumsubmcl.w | . 2 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
15 | 1, 2, 5, 6, 7, 8, 13, 14 | gsumzsubmcl 18141 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ⊆ wss 3540 class class class wbr 4583 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 finSupp cfsupp 8158 Basecbs 15695 0gc0g 15923 Σg cgsu 15924 Mndcmnd 17117 SubMndcsubmnd 17157 Cntzccntz 17571 CMndccmn 18016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-supp 7183 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fsupp 8159 df-oi 8298 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-seq 12664 df-hash 12980 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-0g 15925 df-gsum 15926 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-submnd 17159 df-cntz 17573 df-cmn 18018 |
This theorem is referenced by: gsumsubgcl 18143 mplbas2 19291 tdeglem1 23622 tdeglem4 23624 plypf1 23772 jensen 24515 amgmlem 24516 amgm 24517 wilthlem2 24595 wilthlem3 24596 lgseisenlem3 24902 amgmwlem 42357 |
Copyright terms: Public domain | W3C validator |