MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrridm Structured version   Visualization version   GIF version

Theorem psrridm 19225
Description: The identity element of the ring of power series is a right identity. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psr1cl.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr1cl.z 0 = (0g𝑅)
psr1cl.o 1 = (1r𝑅)
psr1cl.u 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
psr1cl.b 𝐵 = (Base‘𝑆)
psrlidm.t · = (.r𝑆)
psrlidm.x (𝜑𝑋𝐵)
Assertion
Ref Expression
psrridm (𝜑 → (𝑋 · 𝑈) = 𝑋)
Distinct variable groups:   𝑥,𝑓, 0   𝑓,𝐼,𝑥   𝑥,𝐵   𝑅,𝑓,𝑥   𝑥,𝐷   𝑓,𝑋,𝑥   𝜑,𝑥   𝑥,𝑉   𝑥, ·   𝑥,𝑆   𝑥, 1
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   𝑈(𝑥,𝑓)   1 (𝑓)   𝑉(𝑓)

Proof of Theorem psrridm
Dummy variables 𝑦 𝑧 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2610 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 psr1cl.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4 psr1cl.b . . . 4 𝐵 = (Base‘𝑆)
5 psrlidm.t . . . . 5 · = (.r𝑆)
6 psrring.r . . . . 5 (𝜑𝑅 ∈ Ring)
7 psrlidm.x . . . . 5 (𝜑𝑋𝐵)
8 psrring.i . . . . . 6 (𝜑𝐼𝑉)
9 psr1cl.z . . . . . 6 0 = (0g𝑅)
10 psr1cl.o . . . . . 6 1 = (1r𝑅)
11 psr1cl.u . . . . . 6 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
121, 8, 6, 3, 9, 10, 11, 4psr1cl 19223 . . . . 5 (𝜑𝑈𝐵)
131, 4, 5, 6, 7, 12psrmulcl 19209 . . . 4 (𝜑 → (𝑋 · 𝑈) ∈ 𝐵)
141, 2, 3, 4, 13psrelbas 19200 . . 3 (𝜑 → (𝑋 · 𝑈):𝐷⟶(Base‘𝑅))
1514ffnd 5959 . 2 (𝜑 → (𝑋 · 𝑈) Fn 𝐷)
161, 2, 3, 4, 7psrelbas 19200 . . 3 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1716ffnd 5959 . 2 (𝜑𝑋 Fn 𝐷)
18 eqid 2610 . . . 4 (.r𝑅) = (.r𝑅)
197adantr 480 . . . 4 ((𝜑𝑦𝐷) → 𝑋𝐵)
2012adantr 480 . . . 4 ((𝜑𝑦𝐷) → 𝑈𝐵)
21 simpr 476 . . . 4 ((𝜑𝑦𝐷) → 𝑦𝐷)
221, 4, 18, 5, 3, 19, 20, 21psrmulval 19207 . . 3 ((𝜑𝑦𝐷) → ((𝑋 · 𝑈)‘𝑦) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))))))
238adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝐼𝑉)
243psrbagf 19186 . . . . . . . . . 10 ((𝐼𝑉𝑦𝐷) → 𝑦:𝐼⟶ℕ0)
258, 24sylan 487 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝑦:𝐼⟶ℕ0)
26 nn0re 11178 . . . . . . . . . . 11 (𝑧 ∈ ℕ0𝑧 ∈ ℝ)
2726leidd 10473 . . . . . . . . . 10 (𝑧 ∈ ℕ0𝑧𝑧)
2827adantl 481 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ℕ0) → 𝑧𝑧)
2923, 25, 28caofref 6821 . . . . . . . 8 ((𝜑𝑦𝐷) → 𝑦𝑟𝑦)
30 breq1 4586 . . . . . . . . 9 (𝑔 = 𝑦 → (𝑔𝑟𝑦𝑦𝑟𝑦))
3130elrab 3331 . . . . . . . 8 (𝑦 ∈ {𝑔𝐷𝑔𝑟𝑦} ↔ (𝑦𝐷𝑦𝑟𝑦))
3221, 29, 31sylanbrc 695 . . . . . . 7 ((𝜑𝑦𝐷) → 𝑦 ∈ {𝑔𝐷𝑔𝑟𝑦})
3332snssd 4281 . . . . . 6 ((𝜑𝑦𝐷) → {𝑦} ⊆ {𝑔𝐷𝑔𝑟𝑦})
3433resmptd 5371 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) ↾ {𝑦}) = (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))))
3534oveq2d 6565 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) ↾ {𝑦})) = (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))))))
36 ringcmn 18404 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
376, 36syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
3837adantr 480 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ CMnd)
39 ovex 6577 . . . . . . 7 (ℕ0𝑚 𝐼) ∈ V
403, 39rab2ex 4743 . . . . . 6 {𝑔𝐷𝑔𝑟𝑦} ∈ V
4140a1i 11 . . . . 5 ((𝜑𝑦𝐷) → {𝑔𝐷𝑔𝑟𝑦} ∈ V)
426ad2antrr 758 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑅 ∈ Ring)
4316ad2antrr 758 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑋:𝐷⟶(Base‘𝑅))
44 simpr 476 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦})
45 breq1 4586 . . . . . . . . . . 11 (𝑔 = 𝑧 → (𝑔𝑟𝑦𝑧𝑟𝑦))
4645elrab 3331 . . . . . . . . . 10 (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↔ (𝑧𝐷𝑧𝑟𝑦))
4744, 46sylib 207 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → (𝑧𝐷𝑧𝑟𝑦))
4847simpld 474 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑧𝐷)
4943, 48ffvelrnd 6268 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → (𝑋𝑧) ∈ (Base‘𝑅))
501, 2, 3, 4, 20psrelbas 19200 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝑈:𝐷⟶(Base‘𝑅))
5150adantr 480 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑈:𝐷⟶(Base‘𝑅))
528ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝐼𝑉)
5321adantr 480 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑦𝐷)
543psrbagf 19186 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝐷) → 𝑧:𝐼⟶ℕ0)
5552, 48, 54syl2anc 691 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑧:𝐼⟶ℕ0)
5647simprd 478 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑧𝑟𝑦)
573psrbagcon 19192 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦𝐷𝑧:𝐼⟶ℕ0𝑧𝑟𝑦)) → ((𝑦𝑓𝑧) ∈ 𝐷 ∧ (𝑦𝑓𝑧) ∘𝑟𝑦))
5852, 53, 55, 56, 57syl13anc 1320 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → ((𝑦𝑓𝑧) ∈ 𝐷 ∧ (𝑦𝑓𝑧) ∘𝑟𝑦))
5958simpld 474 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → (𝑦𝑓𝑧) ∈ 𝐷)
6051, 59ffvelrnd 6268 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → (𝑈‘(𝑦𝑓𝑧)) ∈ (Base‘𝑅))
612, 18ringcl 18384 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅) ∧ (𝑈‘(𝑦𝑓𝑧)) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))) ∈ (Base‘𝑅))
6242, 49, 60, 61syl3anc 1318 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))) ∈ (Base‘𝑅))
63 eqid 2610 . . . . . 6 (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) = (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))))
6462, 63fmptd 6292 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))):{𝑔𝐷𝑔𝑟𝑦}⟶(Base‘𝑅))
65 eldifi 3694 . . . . . . . . . . 11 (𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦}) → 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦})
6665, 59sylan2 490 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → (𝑦𝑓𝑧) ∈ 𝐷)
67 eqeq1 2614 . . . . . . . . . . . 12 (𝑥 = (𝑦𝑓𝑧) → (𝑥 = (𝐼 × {0}) ↔ (𝑦𝑓𝑧) = (𝐼 × {0})))
6867ifbid 4058 . . . . . . . . . . 11 (𝑥 = (𝑦𝑓𝑧) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = if((𝑦𝑓𝑧) = (𝐼 × {0}), 1 , 0 ))
69 fvex 6113 . . . . . . . . . . . . 13 (1r𝑅) ∈ V
7010, 69eqeltri 2684 . . . . . . . . . . . 12 1 ∈ V
71 fvex 6113 . . . . . . . . . . . . 13 (0g𝑅) ∈ V
729, 71eqeltri 2684 . . . . . . . . . . . 12 0 ∈ V
7370, 72ifex 4106 . . . . . . . . . . 11 if((𝑦𝑓𝑧) = (𝐼 × {0}), 1 , 0 ) ∈ V
7468, 11, 73fvmpt 6191 . . . . . . . . . 10 ((𝑦𝑓𝑧) ∈ 𝐷 → (𝑈‘(𝑦𝑓𝑧)) = if((𝑦𝑓𝑧) = (𝐼 × {0}), 1 , 0 ))
7566, 74syl 17 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → (𝑈‘(𝑦𝑓𝑧)) = if((𝑦𝑓𝑧) = (𝐼 × {0}), 1 , 0 ))
76 eldifsni 4261 . . . . . . . . . . . . 13 (𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦}) → 𝑧𝑦)
7776adantl 481 . . . . . . . . . . . 12 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → 𝑧𝑦)
7877necomd 2837 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → 𝑦𝑧)
79 nn0sscn 11174 . . . . . . . . . . . . . . . 16 0 ⊆ ℂ
80 fss 5969 . . . . . . . . . . . . . . . 16 ((𝑦:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑦:𝐼⟶ℂ)
8125, 79, 80sylancl 693 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐷) → 𝑦:𝐼⟶ℂ)
8281adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑦:𝐼⟶ℂ)
83 fss 5969 . . . . . . . . . . . . . . 15 ((𝑧:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑧:𝐼⟶ℂ)
8455, 79, 83sylancl 693 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑧:𝐼⟶ℂ)
85 ofsubeq0 10894 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑦:𝐼⟶ℂ ∧ 𝑧:𝐼⟶ℂ) → ((𝑦𝑓𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8652, 82, 84, 85syl3anc 1318 . . . . . . . . . . . . 13 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → ((𝑦𝑓𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8765, 86sylan2 490 . . . . . . . . . . . 12 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → ((𝑦𝑓𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8887necon3bbid 2819 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → (¬ (𝑦𝑓𝑧) = (𝐼 × {0}) ↔ 𝑦𝑧))
8978, 88mpbird 246 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → ¬ (𝑦𝑓𝑧) = (𝐼 × {0}))
9089iffalsed 4047 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → if((𝑦𝑓𝑧) = (𝐼 × {0}), 1 , 0 ) = 0 )
9175, 90eqtrd 2644 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → (𝑈‘(𝑦𝑓𝑧)) = 0 )
9291oveq2d 6565 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))) = ((𝑋𝑧)(.r𝑅) 0 ))
932, 18, 9ringrz 18411 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9442, 49, 93syl2anc 691 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9565, 94sylan2 490 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9692, 95eqtrd 2644 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))) = 0 )
9796, 41suppss2 7216 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) supp 0 ) ⊆ {𝑦})
98 mptexg 6389 . . . . . . 7 ({𝑔𝐷𝑔𝑟𝑦} ∈ V → (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) ∈ V)
9941, 98syl 17 . . . . . 6 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) ∈ V)
100 funmpt 5840 . . . . . . 7 Fun (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))))
101100a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → Fun (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))))
10272a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → 0 ∈ V)
103 snfi 7923 . . . . . . 7 {𝑦} ∈ Fin
104103a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → {𝑦} ∈ Fin)
105 suppssfifsupp 8173 . . . . . 6 ((((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) ∈ V ∧ Fun (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) ∧ 0 ∈ V) ∧ ({𝑦} ∈ Fin ∧ ((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) supp 0 ) ⊆ {𝑦})) → (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) finSupp 0 )
10699, 101, 102, 104, 97, 105syl32anc 1326 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) finSupp 0 )
1072, 9, 38, 41, 64, 97, 106gsumres 18137 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧)))) ↾ {𝑦})) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))))))
1086adantr 480 . . . . . 6 ((𝜑𝑦𝐷) → 𝑅 ∈ Ring)
109 ringmnd 18379 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
110108, 109syl 17 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ Mnd)
111 eqid 2610 . . . . . . . . . . 11 𝑦 = 𝑦
112 ofsubeq0 10894 . . . . . . . . . . . 12 ((𝐼𝑉𝑦:𝐼⟶ℂ ∧ 𝑦:𝐼⟶ℂ) → ((𝑦𝑓𝑦) = (𝐼 × {0}) ↔ 𝑦 = 𝑦))
11323, 81, 81, 112syl3anc 1318 . . . . . . . . . . 11 ((𝜑𝑦𝐷) → ((𝑦𝑓𝑦) = (𝐼 × {0}) ↔ 𝑦 = 𝑦))
114111, 113mpbiri 247 . . . . . . . . . 10 ((𝜑𝑦𝐷) → (𝑦𝑓𝑦) = (𝐼 × {0}))
115114fveq2d 6107 . . . . . . . . 9 ((𝜑𝑦𝐷) → (𝑈‘(𝑦𝑓𝑦)) = (𝑈‘(𝐼 × {0})))
116 fconstmpt 5085 . . . . . . . . . . . 12 (𝐼 × {0}) = (𝑤𝐼 ↦ 0)
1173fczpsrbag 19188 . . . . . . . . . . . . 13 (𝐼𝑉 → (𝑤𝐼 ↦ 0) ∈ 𝐷)
1188, 117syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑤𝐼 ↦ 0) ∈ 𝐷)
119116, 118syl5eqel 2692 . . . . . . . . . . 11 (𝜑 → (𝐼 × {0}) ∈ 𝐷)
120119adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∈ 𝐷)
121 iftrue 4042 . . . . . . . . . . 11 (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = 1 )
122121, 11, 70fvmpt 6191 . . . . . . . . . 10 ((𝐼 × {0}) ∈ 𝐷 → (𝑈‘(𝐼 × {0})) = 1 )
123120, 122syl 17 . . . . . . . . 9 ((𝜑𝑦𝐷) → (𝑈‘(𝐼 × {0})) = 1 )
124115, 123eqtrd 2644 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑈‘(𝑦𝑓𝑦)) = 1 )
125124oveq2d 6565 . . . . . . 7 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦𝑓𝑦))) = ((𝑋𝑦)(.r𝑅) 1 ))
12616ffvelrnda 6267 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑋𝑦) ∈ (Base‘𝑅))
1272, 18, 10ringridm 18395 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝑦) ∈ (Base‘𝑅)) → ((𝑋𝑦)(.r𝑅) 1 ) = (𝑋𝑦))
128108, 126, 127syl2anc 691 . . . . . . 7 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅) 1 ) = (𝑋𝑦))
129125, 128eqtrd 2644 . . . . . 6 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦𝑓𝑦))) = (𝑋𝑦))
130129, 126eqeltrd 2688 . . . . 5 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦𝑓𝑦))) ∈ (Base‘𝑅))
131 fveq2 6103 . . . . . . 7 (𝑧 = 𝑦 → (𝑋𝑧) = (𝑋𝑦))
132 oveq2 6557 . . . . . . . 8 (𝑧 = 𝑦 → (𝑦𝑓𝑧) = (𝑦𝑓𝑦))
133132fveq2d 6107 . . . . . . 7 (𝑧 = 𝑦 → (𝑈‘(𝑦𝑓𝑧)) = (𝑈‘(𝑦𝑓𝑦)))
134131, 133oveq12d 6567 . . . . . 6 (𝑧 = 𝑦 → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦𝑓𝑦))))
1352, 134gsumsn 18177 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑦𝐷 ∧ ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦𝑓𝑦))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦𝑓𝑦))))
136110, 21, 130, 135syl3anc 1318 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦𝑓𝑦))))
13735, 107, 1363eqtr3d 2652 . . 3 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦𝑓𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦𝑓𝑦))))
13822, 137, 1293eqtrd 2648 . 2 ((𝜑𝑦𝐷) → ((𝑋 · 𝑈)‘𝑦) = (𝑋𝑦))
13915, 17, 138eqfnfvd 6222 1 (𝜑 → (𝑋 · 𝑈) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  ifcif 4036  {csn 4125   class class class wbr 4583  cmpt 4643   × cxp 5036  ccnv 5037  cres 5040  cima 5041  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  𝑟 cofr 6794   supp csupp 7182  𝑚 cmap 7744  Fincfn 7841   finSupp cfsupp 8158  cc 9813  0cc0 9815  cle 9954  cmin 10145  cn 10897  0cn0 11169  Basecbs 15695  .rcmulr 15769  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117  CMndccmn 18016  1rcur 18324  Ringcrg 18370   mPwSer cmps 19172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-tset 15787  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-psr 19177
This theorem is referenced by:  psrring  19232  psr1  19233
  Copyright terms: Public domain W3C validator