Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rab2ex | Structured version Visualization version GIF version |
Description: A class abstraction based on a class abstraction based on a set is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
rab2ex.1 | ⊢ 𝐵 = {𝑦 ∈ 𝐴 ∣ 𝜓} |
rab2ex.2 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rab2ex | ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rab2ex.1 | . . 3 ⊢ 𝐵 = {𝑦 ∈ 𝐴 ∣ 𝜓} | |
2 | rab2ex.2 | . . 3 ⊢ 𝐴 ∈ V | |
3 | 1, 2 | rabex2 4742 | . 2 ⊢ 𝐵 ∈ V |
4 | 3 | rabex 4740 | 1 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ∈ wcel 1977 {crab 2900 Vcvv 3173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rab 2905 df-v 3175 df-in 3547 df-ss 3554 |
This theorem is referenced by: gsumbagdiag 19197 psrlidm 19224 psrridm 19225 psrass1 19226 mdegmullem 23642 |
Copyright terms: Public domain | W3C validator |