MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rab2ex Structured version   Visualization version   GIF version

Theorem rab2ex 4743
Description: A class abstraction based on a class abstraction based on a set is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.)
Hypotheses
Ref Expression
rab2ex.1 𝐵 = {𝑦𝐴𝜓}
rab2ex.2 𝐴 ∈ V
Assertion
Ref Expression
rab2ex {𝑥𝐵𝜑} ∈ V
Distinct variable groups:   𝑥,𝐵   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem rab2ex
StepHypRef Expression
1 rab2ex.1 . . 3 𝐵 = {𝑦𝐴𝜓}
2 rab2ex.2 . . 3 𝐴 ∈ V
31, 2rabex2 4742 . 2 𝐵 ∈ V
43rabex 4740 1 {𝑥𝐵𝜑} ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-in 3547  df-ss 3554
This theorem is referenced by:  gsumbagdiag  19197  psrlidm  19224  psrridm  19225  psrass1  19226  mdegmullem  23642
  Copyright terms: Public domain W3C validator