Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psr1 Structured version   Visualization version   GIF version

Theorem psr1 19233
 Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psr1.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr1.z 0 = (0g𝑅)
psr1.o 1 = (1r𝑅)
psr1.u 𝑈 = (1r𝑆)
Assertion
Ref Expression
psr1 (𝜑𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )))
Distinct variable groups:   𝑥,𝑓, 0   𝑓,𝐼,𝑥   𝑅,𝑓,𝑥   𝑥,𝐷   𝜑,𝑥   𝑥,𝑉   𝑥,𝑆   𝑥, 1
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑆(𝑓)   𝑈(𝑥,𝑓)   1 (𝑓)   𝑉(𝑓)

Proof of Theorem psr1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 psrring.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 psrring.i . . 3 (𝜑𝐼𝑉)
3 psrring.r . . 3 (𝜑𝑅 ∈ Ring)
4 psr1.d . . 3 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 psr1.z . . 3 0 = (0g𝑅)
6 psr1.o . . 3 1 = (1r𝑅)
7 eqid 2610 . . 3 (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
8 eqid 2610 . . 3 (Base‘𝑆) = (Base‘𝑆)
91, 2, 3, 4, 5, 6, 7, 8psr1cl 19223 . 2 (𝜑 → (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆))
102adantr 480 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝑆)) → 𝐼𝑉)
113adantr 480 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝑆)) → 𝑅 ∈ Ring)
12 eqid 2610 . . . . 5 (.r𝑆) = (.r𝑆)
13 simpr 476 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝑆)) → 𝑦 ∈ (Base‘𝑆))
141, 10, 11, 4, 5, 6, 7, 8, 12, 13psrlidm 19224 . . . 4 ((𝜑𝑦 ∈ (Base‘𝑆)) → ((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦)
151, 10, 11, 4, 5, 6, 7, 8, 12, 13psrridm 19225 . . . 4 ((𝜑𝑦 ∈ (Base‘𝑆)) → (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)
1614, 15jca 553 . . 3 ((𝜑𝑦 ∈ (Base‘𝑆)) → (((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦))
1716ralrimiva 2949 . 2 (𝜑 → ∀𝑦 ∈ (Base‘𝑆)(((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦))
181, 2, 3psrring 19232 . . 3 (𝜑𝑆 ∈ Ring)
19 psr1.u . . . 4 𝑈 = (1r𝑆)
208, 12, 19isringid 18396 . . 3 (𝑆 ∈ Ring → (((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆) ∧ ∀𝑦 ∈ (Base‘𝑆)(((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)) ↔ 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))))
2118, 20syl 17 . 2 (𝜑 → (((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) ∈ (Base‘𝑆) ∧ ∀𝑦 ∈ (Base‘𝑆)(((𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))(.r𝑆)𝑦) = 𝑦 ∧ (𝑦(.r𝑆)(𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) = 𝑦)) ↔ 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))))
229, 17, 21mpbi2and 958 1 (𝜑𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900  ifcif 4036  {csn 4125   ↦ cmpt 4643   × cxp 5036  ◡ccnv 5037   “ cima 5041  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  Fincfn 7841  0cc0 9815  ℕcn 10897  ℕ0cn0 11169  Basecbs 15695  .rcmulr 15769  0gc0g 15923  1rcur 18324  Ringcrg 18370   mPwSer cmps 19172 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-tset 15787  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-mulg 17364  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-psr 19177 This theorem is referenced by:  subrgpsr  19240  mplsubrg  19261  mpl1  19265
 Copyright terms: Public domain W3C validator