MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofsubeq0 Structured version   Visualization version   GIF version

Theorem ofsubeq0 10894
Description: Function analogue of subeq0 10186. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
ofsubeq0 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹𝑓𝐺) = (𝐴 × {0}) ↔ 𝐹 = 𝐺))

Proof of Theorem ofsubeq0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1055 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ)
2 ffn 5958 . . . . . . 7 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
31, 2syl 17 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹 Fn 𝐴)
4 simp3 1056 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺:𝐴⟶ℂ)
5 ffn 5958 . . . . . . 7 (𝐺:𝐴⟶ℂ → 𝐺 Fn 𝐴)
64, 5syl 17 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺 Fn 𝐴)
7 simp1 1054 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐴𝑉)
8 inidm 3784 . . . . . 6 (𝐴𝐴) = 𝐴
9 eqidd 2611 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
10 eqidd 2611 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
113, 6, 7, 7, 8, 9, 10ofval 6804 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐹𝑓𝐺)‘𝑥) = ((𝐹𝑥) − (𝐺𝑥)))
12 c0ex 9913 . . . . . . 7 0 ∈ V
1312fvconst2 6374 . . . . . 6 (𝑥𝐴 → ((𝐴 × {0})‘𝑥) = 0)
1413adantl 481 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐴 × {0})‘𝑥) = 0)
1511, 14eqeq12d 2625 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹𝑓𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) = 0))
161ffvelrnda 6267 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
174ffvelrnda 6267 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℂ)
1816, 17subeq0ad 10281 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹𝑥) − (𝐺𝑥)) = 0 ↔ (𝐹𝑥) = (𝐺𝑥)))
1915, 18bitrd 267 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹𝑓𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥) ↔ (𝐹𝑥) = (𝐺𝑥)))
2019ralbidva 2968 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (∀𝑥𝐴 ((𝐹𝑓𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
213, 6, 7, 7, 8offn 6806 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹𝑓𝐺) Fn 𝐴)
2212fconst 6004 . . . 4 (𝐴 × {0}):𝐴⟶{0}
23 ffn 5958 . . . 4 ((𝐴 × {0}):𝐴⟶{0} → (𝐴 × {0}) Fn 𝐴)
2422, 23ax-mp 5 . . 3 (𝐴 × {0}) Fn 𝐴
25 eqfnfv 6219 . . 3 (((𝐹𝑓𝐺) Fn 𝐴 ∧ (𝐴 × {0}) Fn 𝐴) → ((𝐹𝑓𝐺) = (𝐴 × {0}) ↔ ∀𝑥𝐴 ((𝐹𝑓𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥)))
2621, 24, 25sylancl 693 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹𝑓𝐺) = (𝐴 × {0}) ↔ ∀𝑥𝐴 ((𝐹𝑓𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥)))
27 eqfnfv 6219 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
283, 6, 27syl2anc 691 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
2920, 26, 283bitr4d 299 1 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹𝑓𝐺) = (𝐴 × {0}) ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  {csn 4125   × cxp 5036   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  cc 9813  0cc0 9815  cmin 10145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958  df-sub 10147
This theorem is referenced by:  psrridm  19225  dv11cn  23568  coeeulem  23784  plydiveu  23857  facth  23865  quotcan  23868  plyexmo  23872  mpaaeu  36739
  Copyright terms: Public domain W3C validator