Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrridm Structured version   Unicode version

Theorem psrridm 17857
 Description: The identity element of the ring of power series is a right identity. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrrng.s mPwSer
psrrng.i
psrrng.r
psr1cl.d
psr1cl.z
psr1cl.o
psr1cl.u
psr1cl.b
psrlidm.t
psrlidm.x
Assertion
Ref Expression
psrridm
Distinct variable groups:   ,,   ,,   ,   ,,   ,   ,,   ,   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()   ()   ()   (,)   ()   ()

Proof of Theorem psrridm
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrrng.s . . . 4 mPwSer
2 eqid 2467 . . . 4
3 psr1cl.d . . . 4
4 psr1cl.b . . . 4
5 psrlidm.t . . . . 5
6 psrrng.r . . . . 5
7 psrlidm.x . . . . 5
8 psrrng.i . . . . . 6
9 psr1cl.z . . . . . 6
10 psr1cl.o . . . . . 6
11 psr1cl.u . . . . . 6
121, 8, 6, 3, 9, 10, 11, 4psr1cl 17854 . . . . 5
131, 4, 5, 6, 7, 12psrmulcl 17840 . . . 4
141, 2, 3, 4, 13psrelbas 17831 . . 3
15 ffn 5731 . . 3
1614, 15syl 16 . 2
171, 2, 3, 4, 7psrelbas 17831 . . 3
18 ffn 5731 . . 3
1917, 18syl 16 . 2
20 eqid 2467 . . . 4
217adantr 465 . . . 4
2212adantr 465 . . . 4
23 simpr 461 . . . 4
241, 4, 20, 5, 3, 21, 22, 23psrmulval 17838 . . 3 g
258adantr 465 . . . . . . . . 9
263psrbagf 17813 . . . . . . . . . 10
278, 26sylan 471 . . . . . . . . 9
28 nn0re 10804 . . . . . . . . . . 11
2928leidd 10119 . . . . . . . . . 10
3029adantl 466 . . . . . . . . 9
3125, 27, 30caofref 6550 . . . . . . . 8
32 breq1 4450 . . . . . . . . 9
3332elrab 3261 . . . . . . . 8
3423, 31, 33sylanbrc 664 . . . . . . 7
3534snssd 4172 . . . . . 6
36 resmpt 5323 . . . . . 6
3735, 36syl 16 . . . . 5
3837oveq2d 6300 . . . 4 g g
39 rngcmn 17030 . . . . . . 7 CMnd
406, 39syl 16 . . . . . 6 CMnd
4140adantr 465 . . . . 5 CMnd
42 ovex 6309 . . . . . . 7
433, 42rab2ex 4601 . . . . . 6
4443a1i 11 . . . . 5
456ad2antrr 725 . . . . . . 7
4617ad2antrr 725 . . . . . . . 8
47 simpr 461 . . . . . . . . . 10
48 breq1 4450 . . . . . . . . . . 11
4948elrab 3261 . . . . . . . . . 10
5047, 49sylib 196 . . . . . . . . 9
5150simpld 459 . . . . . . . 8
5246, 51ffvelrnd 6022 . . . . . . 7
531, 2, 3, 4, 22psrelbas 17831 . . . . . . . . 9
5453adantr 465 . . . . . . . 8
558ad2antrr 725 . . . . . . . . . 10
5623adantr 465 . . . . . . . . . 10
573psrbagf 17813 . . . . . . . . . . 11
5855, 51, 57syl2anc 661 . . . . . . . . . 10
5950simprd 463 . . . . . . . . . 10
603psrbagcon 17821 . . . . . . . . . 10
6155, 56, 58, 59, 60syl13anc 1230 . . . . . . . . 9
6261simpld 459 . . . . . . . 8
6354, 62ffvelrnd 6022 . . . . . . 7
642, 20rngcl 17013 . . . . . . 7
6545, 52, 63, 64syl3anc 1228 . . . . . 6
66 eqid 2467 . . . . . 6
6765, 66fmptd 6045 . . . . 5
68 eldifi 3626 . . . . . . . . . . 11
6968, 62sylan2 474 . . . . . . . . . 10
70 eqeq1 2471 . . . . . . . . . . . 12
7170ifbid 3961 . . . . . . . . . . 11
72 fvex 5876 . . . . . . . . . . . . 13
7310, 72eqeltri 2551 . . . . . . . . . . . 12
74 fvex 5876 . . . . . . . . . . . . 13
759, 74eqeltri 2551 . . . . . . . . . . . 12
7673, 75ifex 4008 . . . . . . . . . . 11
7771, 11, 76fvmpt 5950 . . . . . . . . . 10
7869, 77syl 16 . . . . . . . . 9
79 eldifsni 4153 . . . . . . . . . . . . 13
8079adantl 466 . . . . . . . . . . . 12
8180necomd 2738 . . . . . . . . . . 11
82 nn0sscn 10800 . . . . . . . . . . . . . . . 16
83 fss 5739 . . . . . . . . . . . . . . . 16
8427, 82, 83sylancl 662 . . . . . . . . . . . . . . 15
8584adantr 465 . . . . . . . . . . . . . 14
86 fss 5739 . . . . . . . . . . . . . . 15
8758, 82, 86sylancl 662 . . . . . . . . . . . . . 14
88 ofsubeq0 10533 . . . . . . . . . . . . . 14
8955, 85, 87, 88syl3anc 1228 . . . . . . . . . . . . 13
9068, 89sylan2 474 . . . . . . . . . . . 12
9190necon3bbid 2714 . . . . . . . . . . 11
9281, 91mpbird 232 . . . . . . . . . 10
93 iffalse 3948 . . . . . . . . . 10
9492, 93syl 16 . . . . . . . . 9
9578, 94eqtrd 2508 . . . . . . . 8
9695oveq2d 6300 . . . . . . 7
972, 20, 9rngrz 17037 . . . . . . . . 9
9845, 52, 97syl2anc 661 . . . . . . . 8
9968, 98sylan2 474 . . . . . . 7
10096, 99eqtrd 2508 . . . . . 6
101100, 44suppss2 6934 . . . . 5 supp
102 mptexg 6130 . . . . . . 7
10344, 102syl 16 . . . . . 6
104 funmpt 5624 . . . . . . 7
105104a1i 11 . . . . . 6
10675a1i 11 . . . . . 6
107 snfi 7596 . . . . . . 7
108107a1i 11 . . . . . 6
109 suppssfifsupp 7844 . . . . . 6 supp finSupp
110103, 105, 106, 108, 101, 109syl32anc 1236 . . . . 5 finSupp
1112, 9, 41, 44, 67, 101, 110gsumres 16724 . . . 4 g g
1126adantr 465 . . . . . 6
113 rngmnd 17009 . . . . . 6
114112, 113syl 16 . . . . 5
115 eqid 2467 . . . . . . . . . . 11
116 ofsubeq0 10533 . . . . . . . . . . . 12
11725, 84, 84, 116syl3anc 1228 . . . . . . . . . . 11
118115, 117mpbiri 233 . . . . . . . . . 10
119118fveq2d 5870 . . . . . . . . 9
120 fconstmpt 5043 . . . . . . . . . . . 12
1213fczpsrbag 17815 . . . . . . . . . . . . 13
1228, 121syl 16 . . . . . . . . . . . 12
123120, 122syl5eqel 2559 . . . . . . . . . . 11
124123adantr 465 . . . . . . . . . 10
125 iftrue 3945 . . . . . . . . . . 11
126125, 11, 73fvmpt 5950 . . . . . . . . . 10
127124, 126syl 16 . . . . . . . . 9
128119, 127eqtrd 2508 . . . . . . . 8
129128oveq2d 6300 . . . . . . 7
13017ffvelrnda 6021 . . . . . . . 8
1312, 20, 10rngridm 17024 . . . . . . . 8
132112, 130, 131syl2anc 661 . . . . . . 7
133129, 132eqtrd 2508 . . . . . 6
134133, 130eqeltrd 2555 . . . . 5
135 fveq2 5866 . . . . . . 7
136 oveq2 6292 . . . . . . . 8
137136fveq2d 5870 . . . . . . 7
138135, 137oveq12d 6302 . . . . . 6
1392, 138gsumsn 16784 . . . . 5 g
140114, 23, 134, 139syl3anc 1228 . . . 4 g
14138, 111, 1403eqtr3d 2516 . . 3 g
14224, 141, 1333eqtrd 2512 . 2
14316, 19, 142eqfnfvd 5978 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 184   wa 369   wceq 1379   wcel 1767   wne 2662  crab 2818  cvv 3113   cdif 3473   wss 3476  cif 3939  csn 4027   class class class wbr 4447   cmpt 4505   cxp 4997  ccnv 4998   cres 5001  cima 5002   wfun 5582   wfn 5583  wf 5584  cfv 5588  (class class class)co 6284   cof 6522   cofr 6523   supp csupp 6901   cmap 7420  cfn 7516   finSupp cfsupp 7829  cc 9490  cc0 9492   cle 9629   cmin 9805  cn 10536  cn0 10795  cbs 14490  cmulr 14556  c0g 14695   g cgsu 14696  cmnd 15726  CMndccmn 16604  cur 16955  crg 17000   mPwSer cmps 17799 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-ofr 6525  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-oi 7935  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-n0 10796  df-z 10865  df-uz 11083  df-fz 11673  df-fzo 11793  df-seq 12076  df-hash 12374  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-plusg 14568  df-mulr 14569  df-sca 14571  df-vsca 14572  df-tset 14574  df-0g 14697  df-gsum 14698  df-mnd 15732  df-grp 15867  df-minusg 15868  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-abl 16607  df-mgp 16944  df-ur 16956  df-rng 17002  df-psr 17804 This theorem is referenced by:  psrrng  17865  psr1  17866
 Copyright terms: Public domain W3C validator