Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaglefi Structured version   Visualization version   GIF version

Theorem psrbaglefi 19193
 Description: There are finitely many bags dominated by a given bag. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 25-Jan-2015.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbaglefi ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦𝑟𝐹} ∈ Fin)
Distinct variable groups:   𝑦,𝑓,𝐹   𝑦,𝑉   𝑓,𝐼,𝑦   𝑦,𝐷
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem psrbaglefi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-rab 2905 . . 3 {𝑦𝐷𝑦𝑟𝐹} = {𝑦 ∣ (𝑦𝐷𝑦𝑟𝐹)}
2 psrbag.d . . . . . . . . 9 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
32psrbag 19185 . . . . . . . 8 (𝐼𝑉 → (𝑦𝐷 ↔ (𝑦:𝐼⟶ℕ0 ∧ (𝑦 “ ℕ) ∈ Fin)))
43adantr 480 . . . . . . 7 ((𝐼𝑉𝐹𝐷) → (𝑦𝐷 ↔ (𝑦:𝐼⟶ℕ0 ∧ (𝑦 “ ℕ) ∈ Fin)))
5 simpl 472 . . . . . . 7 ((𝑦:𝐼⟶ℕ0 ∧ (𝑦 “ ℕ) ∈ Fin) → 𝑦:𝐼⟶ℕ0)
64, 5syl6bi 242 . . . . . 6 ((𝐼𝑉𝐹𝐷) → (𝑦𝐷𝑦:𝐼⟶ℕ0))
76adantrd 483 . . . . 5 ((𝐼𝑉𝐹𝐷) → ((𝑦𝐷𝑦𝑟𝐹) → 𝑦:𝐼⟶ℕ0))
8 ss2ixp 7807 . . . . . . . . 9 (∀𝑥𝐼 (0...(𝐹𝑥)) ⊆ ℕ0X𝑥𝐼 (0...(𝐹𝑥)) ⊆ X𝑥𝐼0)
9 fz0ssnn0 12304 . . . . . . . . . 10 (0...(𝐹𝑥)) ⊆ ℕ0
109a1i 11 . . . . . . . . 9 (𝑥𝐼 → (0...(𝐹𝑥)) ⊆ ℕ0)
118, 10mprg 2910 . . . . . . . 8 X𝑥𝐼 (0...(𝐹𝑥)) ⊆ X𝑥𝐼0
1211sseli 3564 . . . . . . 7 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦X𝑥𝐼0)
13 vex 3176 . . . . . . . 8 𝑦 ∈ V
1413elixpconst 7802 . . . . . . 7 (𝑦X𝑥𝐼0𝑦:𝐼⟶ℕ0)
1512, 14sylib 207 . . . . . 6 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦:𝐼⟶ℕ0)
1615a1i 11 . . . . 5 ((𝐼𝑉𝐹𝐷) → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦:𝐼⟶ℕ0))
17 ffn 5958 . . . . . . . . 9 (𝑦:𝐼⟶ℕ0𝑦 Fn 𝐼)
1817adantl 481 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝑦 Fn 𝐼)
1913elixp 7801 . . . . . . . . 9 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ (𝑦 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
2019baib 942 . . . . . . . 8 (𝑦 Fn 𝐼 → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
2118, 20syl 17 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
22 ffvelrn 6265 . . . . . . . . . . . 12 ((𝑦:𝐼⟶ℕ0𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
2322adantll 746 . . . . . . . . . . 11 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
24 nn0uz 11598 . . . . . . . . . . 11 0 = (ℤ‘0)
2523, 24syl6eleq 2698 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (ℤ‘0))
262psrbagf 19186 . . . . . . . . . . . . 13 ((𝐼𝑉𝐹𝐷) → 𝐹:𝐼⟶ℕ0)
2726adantr 480 . . . . . . . . . . . 12 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝐹:𝐼⟶ℕ0)
2827ffvelrnda 6267 . . . . . . . . . . 11 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℕ0)
2928nn0zd 11356 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℤ)
30 elfz5 12205 . . . . . . . . . 10 (((𝑦𝑥) ∈ (ℤ‘0) ∧ (𝐹𝑥) ∈ ℤ) → ((𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ (𝑦𝑥) ≤ (𝐹𝑥)))
3125, 29, 30syl2anc 691 . . . . . . . . 9 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → ((𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ (𝑦𝑥) ≤ (𝐹𝑥)))
3231ralbidva 2968 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ≤ (𝐹𝑥)))
3327ffnd 5959 . . . . . . . . 9 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝐹 Fn 𝐼)
34 simpll 786 . . . . . . . . 9 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝐼𝑉)
35 inidm 3784 . . . . . . . . 9 (𝐼𝐼) = 𝐼
36 eqidd 2611 . . . . . . . . 9 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) = (𝑦𝑥))
37 eqidd 2611 . . . . . . . . 9 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
3818, 33, 34, 34, 35, 36, 37ofrfval 6803 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦𝑟𝐹 ↔ ∀𝑥𝐼 (𝑦𝑥) ≤ (𝐹𝑥)))
3932, 38bitr4d 270 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ 𝑦𝑟𝐹))
402psrbaglecl 19190 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝐹𝐷𝑦:𝐼⟶ℕ0𝑦𝑟𝐹)) → 𝑦𝐷)
41403exp2 1277 . . . . . . . . 9 (𝐼𝑉 → (𝐹𝐷 → (𝑦:𝐼⟶ℕ0 → (𝑦𝑟𝐹𝑦𝐷))))
4241imp31 447 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦𝑟𝐹𝑦𝐷))
4342pm4.71rd 665 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦𝑟𝐹 ↔ (𝑦𝐷𝑦𝑟𝐹)))
4421, 39, 433bitrrd 294 . . . . . 6 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → ((𝑦𝐷𝑦𝑟𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥))))
4544ex 449 . . . . 5 ((𝐼𝑉𝐹𝐷) → (𝑦:𝐼⟶ℕ0 → ((𝑦𝐷𝑦𝑟𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥)))))
467, 16, 45pm5.21ndd 368 . . . 4 ((𝐼𝑉𝐹𝐷) → ((𝑦𝐷𝑦𝑟𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥))))
4746abbi1dv 2730 . . 3 ((𝐼𝑉𝐹𝐷) → {𝑦 ∣ (𝑦𝐷𝑦𝑟𝐹)} = X𝑥𝐼 (0...(𝐹𝑥)))
481, 47syl5eq 2656 . 2 ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦𝑟𝐹} = X𝑥𝐼 (0...(𝐹𝑥)))
49 simpr 476 . . . . 5 ((𝐼𝑉𝐹𝐷) → 𝐹𝐷)
50 cnveq 5218 . . . . . . . 8 (𝑓 = 𝐹𝑓 = 𝐹)
5150imaeq1d 5384 . . . . . . 7 (𝑓 = 𝐹 → (𝑓 “ ℕ) = (𝐹 “ ℕ))
5251eleq1d 2672 . . . . . 6 (𝑓 = 𝐹 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝐹 “ ℕ) ∈ Fin))
5352, 2elrab2 3333 . . . . 5 (𝐹𝐷 ↔ (𝐹 ∈ (ℕ0𝑚 𝐼) ∧ (𝐹 “ ℕ) ∈ Fin))
5449, 53sylib 207 . . . 4 ((𝐼𝑉𝐹𝐷) → (𝐹 ∈ (ℕ0𝑚 𝐼) ∧ (𝐹 “ ℕ) ∈ Fin))
5554simprd 478 . . 3 ((𝐼𝑉𝐹𝐷) → (𝐹 “ ℕ) ∈ Fin)
56 fzfid 12634 . . 3 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝐼) → (0...(𝐹𝑥)) ∈ Fin)
57 simpl 472 . . . . . . . . 9 ((𝐼𝑉𝐹𝐷) → 𝐼𝑉)
5857, 26jca 553 . . . . . . . 8 ((𝐼𝑉𝐹𝐷) → (𝐼𝑉𝐹:𝐼⟶ℕ0))
59 frnnn0supp 11226 . . . . . . . 8 ((𝐼𝑉𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))
60 eqimss 3620 . . . . . . . 8 ((𝐹 supp 0) = (𝐹 “ ℕ) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
6158, 59, 603syl 18 . . . . . . 7 ((𝐼𝑉𝐹𝐷) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
62 c0ex 9913 . . . . . . . 8 0 ∈ V
6362a1i 11 . . . . . . 7 ((𝐼𝑉𝐹𝐷) → 0 ∈ V)
6426, 61, 57, 63suppssr 7213 . . . . . 6 (((𝐼𝑉𝐹𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐹𝑥) = 0)
6564oveq2d 6565 . . . . 5 (((𝐼𝑉𝐹𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) = (0...0))
66 fz0sn 12308 . . . . 5 (0...0) = {0}
6765, 66syl6eq 2660 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) = {0})
68 eqimss 3620 . . . 4 ((0...(𝐹𝑥)) = {0} → (0...(𝐹𝑥)) ⊆ {0})
6967, 68syl 17 . . 3 (((𝐼𝑉𝐹𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) ⊆ {0})
7055, 56, 69ixpfi2 8147 . 2 ((𝐼𝑉𝐹𝐷) → X𝑥𝐼 (0...(𝐹𝑥)) ∈ Fin)
7148, 70eqeltrd 2688 1 ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦𝑟𝐹} ∈ Fin)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {cab 2596  ∀wral 2896  {crab 2900  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  {csn 4125   class class class wbr 4583  ◡ccnv 5037   “ cima 5041   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ∘𝑟 cofr 6794   supp csupp 7182   ↑𝑚 cmap 7744  Xcixp 7794  Fincfn 7841  0cc0 9815   ≤ cle 9954  ℕcn 10897  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  ...cfz 12197 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198 This theorem is referenced by:  gsumbagdiag  19197  psrass1lem  19198  psrmulcllem  19208  psrass1  19226  psrdi  19227  psrdir  19228  psrass23l  19229  psrcom  19230  psrass23  19231  resspsrmul  19238  mplsubrglem  19260  mplmonmul  19285  psropprmul  19429
 Copyright terms: Public domain W3C validator