MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrcom Structured version   Visualization version   GIF version

Theorem psrcom 19230
Description: Commutative law for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrcom.c (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
psrcom (𝜑 → (𝑋 × 𝑌) = (𝑌 × 𝑋))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   × (𝑓)   𝑉(𝑓)

Proof of Theorem psrcom
Dummy variables 𝑥 𝑘 𝑧 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2610 . . . . 5 (0g𝑅) = (0g𝑅)
3 psrring.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
4 ringcmn 18404 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
53, 4syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
65adantr 480 . . . . 5 ((𝜑𝑥𝐷) → 𝑅 ∈ CMnd)
7 psrring.i . . . . . 6 (𝜑𝐼𝑉)
8 psrass.d . . . . . . 7 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
98psrbaglefi 19193 . . . . . 6 ((𝐼𝑉𝑥𝐷) → {𝑔𝐷𝑔𝑟𝑥} ∈ Fin)
107, 9sylan 487 . . . . 5 ((𝜑𝑥𝐷) → {𝑔𝐷𝑔𝑟𝑥} ∈ Fin)
113ad2antrr 758 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑅 ∈ Ring)
12 psrring.s . . . . . . . . . 10 𝑆 = (𝐼 mPwSer 𝑅)
13 psrass.b . . . . . . . . . 10 𝐵 = (Base‘𝑆)
14 psrass.x . . . . . . . . . 10 (𝜑𝑋𝐵)
1512, 1, 8, 13, 14psrelbas 19200 . . . . . . . . 9 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1615ad2antrr 758 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑋:𝐷⟶(Base‘𝑅))
17 simpr 476 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥})
18 breq1 4586 . . . . . . . . . . 11 (𝑔 = 𝑘 → (𝑔𝑟𝑥𝑘𝑟𝑥))
1918elrab 3331 . . . . . . . . . 10 (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↔ (𝑘𝐷𝑘𝑟𝑥))
2017, 19sylib 207 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑘𝐷𝑘𝑟𝑥))
2120simpld 474 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑘𝐷)
2216, 21ffvelrnd 6268 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑋𝑘) ∈ (Base‘𝑅))
23 psrass.y . . . . . . . . . 10 (𝜑𝑌𝐵)
2412, 1, 8, 13, 23psrelbas 19200 . . . . . . . . 9 (𝜑𝑌:𝐷⟶(Base‘𝑅))
2524ad2antrr 758 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑌:𝐷⟶(Base‘𝑅))
267ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝐼𝑉)
27 simplr 788 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑥𝐷)
288psrbagf 19186 . . . . . . . . . . 11 ((𝐼𝑉𝑘𝐷) → 𝑘:𝐼⟶ℕ0)
2926, 21, 28syl2anc 691 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑘:𝐼⟶ℕ0)
3020simprd 478 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑘𝑟𝑥)
318psrbagcon 19192 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝐷𝑘:𝐼⟶ℕ0𝑘𝑟𝑥)) → ((𝑥𝑓𝑘) ∈ 𝐷 ∧ (𝑥𝑓𝑘) ∘𝑟𝑥))
3226, 27, 29, 30, 31syl13anc 1320 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → ((𝑥𝑓𝑘) ∈ 𝐷 ∧ (𝑥𝑓𝑘) ∘𝑟𝑥))
3332simpld 474 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑥𝑓𝑘) ∈ 𝐷)
3425, 33ffvelrnd 6268 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑌‘(𝑥𝑓𝑘)) ∈ (Base‘𝑅))
35 eqid 2610 . . . . . . . 8 (.r𝑅) = (.r𝑅)
361, 35ringcl 18384 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑘) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑥𝑓𝑘)) ∈ (Base‘𝑅)) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘))) ∈ (Base‘𝑅))
3711, 22, 34, 36syl3anc 1318 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘))) ∈ (Base‘𝑅))
38 eqid 2610 . . . . . 6 (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) = (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘))))
3937, 38fmptd 6292 . . . . 5 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))):{𝑔𝐷𝑔𝑟𝑥}⟶(Base‘𝑅))
40 ovex 6577 . . . . . . . . . 10 (ℕ0𝑚 𝐼) ∈ V
418, 40rabex2 4742 . . . . . . . . 9 𝐷 ∈ V
4241a1i 11 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝐷 ∈ V)
43 rabexg 4739 . . . . . . . 8 (𝐷 ∈ V → {𝑔𝐷𝑔𝑟𝑥} ∈ V)
4442, 43syl 17 . . . . . . 7 ((𝜑𝑥𝐷) → {𝑔𝐷𝑔𝑟𝑥} ∈ V)
45 mptexg 6389 . . . . . . 7 ({𝑔𝐷𝑔𝑟𝑥} ∈ V → (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) ∈ V)
4644, 45syl 17 . . . . . 6 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) ∈ V)
47 funmpt 5840 . . . . . . 7 Fun (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘))))
4847a1i 11 . . . . . 6 ((𝜑𝑥𝐷) → Fun (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))))
49 fvex 6113 . . . . . . 7 (0g𝑅) ∈ V
5049a1i 11 . . . . . 6 ((𝜑𝑥𝐷) → (0g𝑅) ∈ V)
51 suppssdm 7195 . . . . . . . 8 ((𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) supp (0g𝑅)) ⊆ dom (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘))))
5238dmmptss 5548 . . . . . . . 8 dom (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) ⊆ {𝑔𝐷𝑔𝑟𝑥}
5351, 52sstri 3577 . . . . . . 7 ((𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔𝑟𝑥}
5453a1i 11 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔𝑟𝑥})
55 suppssfifsupp 8173 . . . . . 6 ((((𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) ∈ V ∧ Fun (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑔𝐷𝑔𝑟𝑥} ∈ Fin ∧ ((𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔𝑟𝑥})) → (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) finSupp (0g𝑅))
5646, 48, 50, 10, 54, 55syl32anc 1326 . . . . 5 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) finSupp (0g𝑅))
57 eqid 2610 . . . . . . 7 {𝑔𝐷𝑔𝑟𝑥} = {𝑔𝐷𝑔𝑟𝑥}
588, 57psrbagconf1o 19195 . . . . . 6 ((𝐼𝑉𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ (𝑥𝑓𝑗)):{𝑔𝐷𝑔𝑟𝑥}–1-1-onto→{𝑔𝐷𝑔𝑟𝑥})
597, 58sylan 487 . . . . 5 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ (𝑥𝑓𝑗)):{𝑔𝐷𝑔𝑟𝑥}–1-1-onto→{𝑔𝐷𝑔𝑟𝑥})
601, 2, 6, 10, 39, 56, 59gsumf1o 18140 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘))))) = (𝑅 Σg ((𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ (𝑥𝑓𝑗)))))
617ad2antrr 758 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝐼𝑉)
62 simplr 788 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑥𝐷)
63 simpr 476 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥})
648, 57psrbagconcl 19194 . . . . . . . 8 ((𝐼𝑉𝑥𝐷𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑥𝑓𝑗) ∈ {𝑔𝐷𝑔𝑟𝑥})
6561, 62, 63, 64syl3anc 1318 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑥𝑓𝑗) ∈ {𝑔𝐷𝑔𝑟𝑥})
66 eqidd 2611 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ (𝑥𝑓𝑗)) = (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ (𝑥𝑓𝑗)))
67 eqidd 2611 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) = (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))))
68 fveq2 6103 . . . . . . . 8 (𝑘 = (𝑥𝑓𝑗) → (𝑋𝑘) = (𝑋‘(𝑥𝑓𝑗)))
69 oveq2 6557 . . . . . . . . 9 (𝑘 = (𝑥𝑓𝑗) → (𝑥𝑓𝑘) = (𝑥𝑓 − (𝑥𝑓𝑗)))
7069fveq2d 6107 . . . . . . . 8 (𝑘 = (𝑥𝑓𝑗) → (𝑌‘(𝑥𝑓𝑘)) = (𝑌‘(𝑥𝑓 − (𝑥𝑓𝑗))))
7168, 70oveq12d 6567 . . . . . . 7 (𝑘 = (𝑥𝑓𝑗) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘))) = ((𝑋‘(𝑥𝑓𝑗))(.r𝑅)(𝑌‘(𝑥𝑓 − (𝑥𝑓𝑗)))))
7265, 66, 67, 71fmptco 6303 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ (𝑥𝑓𝑗))) = (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋‘(𝑥𝑓𝑗))(.r𝑅)(𝑌‘(𝑥𝑓 − (𝑥𝑓𝑗))))))
738psrbagf 19186 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑥𝐷) → 𝑥:𝐼⟶ℕ0)
747, 73sylan 487 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐷) → 𝑥:𝐼⟶ℕ0)
7574adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑥:𝐼⟶ℕ0)
7675ffvelrnda 6267 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) ∧ 𝑧𝐼) → (𝑥𝑧) ∈ ℕ0)
77 breq1 4586 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑗 → (𝑔𝑟𝑥𝑗𝑟𝑥))
7877elrab 3331 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↔ (𝑗𝐷𝑗𝑟𝑥))
7963, 78sylib 207 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑗𝐷𝑗𝑟𝑥))
8079simpld 474 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑗𝐷)
818psrbagf 19186 . . . . . . . . . . . . . . 15 ((𝐼𝑉𝑗𝐷) → 𝑗:𝐼⟶ℕ0)
8261, 80, 81syl2anc 691 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑗:𝐼⟶ℕ0)
8382ffvelrnda 6267 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) ∧ 𝑧𝐼) → (𝑗𝑧) ∈ ℕ0)
84 nn0cn 11179 . . . . . . . . . . . . . 14 ((𝑥𝑧) ∈ ℕ0 → (𝑥𝑧) ∈ ℂ)
85 nn0cn 11179 . . . . . . . . . . . . . 14 ((𝑗𝑧) ∈ ℕ0 → (𝑗𝑧) ∈ ℂ)
86 nncan 10189 . . . . . . . . . . . . . 14 (((𝑥𝑧) ∈ ℂ ∧ (𝑗𝑧) ∈ ℂ) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8784, 85, 86syl2an 493 . . . . . . . . . . . . 13 (((𝑥𝑧) ∈ ℕ0 ∧ (𝑗𝑧) ∈ ℕ0) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8876, 83, 87syl2anc 691 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) ∧ 𝑧𝐼) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8988mpteq2dva 4672 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑧𝐼 ↦ ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧)))) = (𝑧𝐼 ↦ (𝑗𝑧)))
90 ovex 6577 . . . . . . . . . . . . 13 ((𝑥𝑧) − (𝑗𝑧)) ∈ V
9190a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) ∧ 𝑧𝐼) → ((𝑥𝑧) − (𝑗𝑧)) ∈ V)
9275feqmptd 6159 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑥 = (𝑧𝐼 ↦ (𝑥𝑧)))
9382feqmptd 6159 . . . . . . . . . . . . 13 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑗 = (𝑧𝐼 ↦ (𝑗𝑧)))
9461, 76, 83, 92, 93offval2 6812 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑥𝑓𝑗) = (𝑧𝐼 ↦ ((𝑥𝑧) − (𝑗𝑧))))
9561, 76, 91, 92, 94offval2 6812 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑥𝑓 − (𝑥𝑓𝑗)) = (𝑧𝐼 ↦ ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧)))))
9689, 95, 933eqtr4d 2654 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑥𝑓 − (𝑥𝑓𝑗)) = 𝑗)
9796fveq2d 6107 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑌‘(𝑥𝑓 − (𝑥𝑓𝑗))) = (𝑌𝑗))
9897oveq2d 6565 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → ((𝑋‘(𝑥𝑓𝑗))(.r𝑅)(𝑌‘(𝑥𝑓 − (𝑥𝑓𝑗)))) = ((𝑋‘(𝑥𝑓𝑗))(.r𝑅)(𝑌𝑗)))
99 psrcom.c . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
10099ad2antrr 758 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑅 ∈ CRing)
10115ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑋:𝐷⟶(Base‘𝑅))
10279simprd 478 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑗𝑟𝑥)
1038psrbagcon 19192 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑥𝐷𝑗:𝐼⟶ℕ0𝑗𝑟𝑥)) → ((𝑥𝑓𝑗) ∈ 𝐷 ∧ (𝑥𝑓𝑗) ∘𝑟𝑥))
10461, 62, 82, 102, 103syl13anc 1320 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → ((𝑥𝑓𝑗) ∈ 𝐷 ∧ (𝑥𝑓𝑗) ∘𝑟𝑥))
105104simpld 474 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑥𝑓𝑗) ∈ 𝐷)
106101, 105ffvelrnd 6268 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑋‘(𝑥𝑓𝑗)) ∈ (Base‘𝑅))
10724ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑌:𝐷⟶(Base‘𝑅))
108107, 80ffvelrnd 6268 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑌𝑗) ∈ (Base‘𝑅))
1091, 35crngcom 18385 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑋‘(𝑥𝑓𝑗)) ∈ (Base‘𝑅) ∧ (𝑌𝑗) ∈ (Base‘𝑅)) → ((𝑋‘(𝑥𝑓𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥𝑓𝑗))))
110100, 106, 108, 109syl3anc 1318 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → ((𝑋‘(𝑥𝑓𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥𝑓𝑗))))
11198, 110eqtrd 2644 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → ((𝑋‘(𝑥𝑓𝑗))(.r𝑅)(𝑌‘(𝑥𝑓 − (𝑥𝑓𝑗)))) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥𝑓𝑗))))
112111mpteq2dva 4672 . . . . . 6 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋‘(𝑥𝑓𝑗))(.r𝑅)(𝑌‘(𝑥𝑓 − (𝑥𝑓𝑗))))) = (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥𝑓𝑗)))))
11372, 112eqtrd 2644 . . . . 5 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ (𝑥𝑓𝑗))) = (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥𝑓𝑗)))))
114113oveq2d 6565 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg ((𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ (𝑥𝑓𝑗)))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥𝑓𝑗))))))
11560, 114eqtrd 2644 . . 3 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘))))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥𝑓𝑗))))))
116115mpteq2dva 4672 . 2 (𝜑 → (𝑥𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))))) = (𝑥𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥𝑓𝑗)))))))
117 psrass.t . . 3 × = (.r𝑆)
11812, 13, 35, 117, 8, 14, 23psrmulfval 19206 . 2 (𝜑 → (𝑋 × 𝑌) = (𝑥𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))))))
11912, 13, 35, 117, 8, 23, 14psrmulfval 19206 . 2 (𝜑 → (𝑌 × 𝑋) = (𝑥𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥𝑓𝑗)))))))
120116, 118, 1193eqtr4d 2654 1 (𝜑 → (𝑋 × 𝑌) = (𝑌 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  wss 3540   class class class wbr 4583  cmpt 4643  ccnv 5037  dom cdm 5038  cima 5041  ccom 5042  Fun wfun 5798  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  𝑓 cof 6793  𝑟 cofr 6794   supp csupp 7182  𝑚 cmap 7744  Fincfn 7841   finSupp cfsupp 8158  cc 9813  cle 9954  cmin 10145  cn 10897  0cn0 11169  Basecbs 15695  .rcmulr 15769  0gc0g 15923   Σg cgsu 15924  CMndccmn 18016  Ringcrg 18370  CRingccrg 18371   mPwSer cmps 19172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-tset 15787  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-psr 19177
This theorem is referenced by:  psrcrng  19234
  Copyright terms: Public domain W3C validator