MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplmonmul Structured version   Visualization version   GIF version

Theorem mplmonmul 19285
Description: The product of two monomials adds the exponent vectors together. For example, the product of (𝑥↑2)(𝑦↑2) with (𝑦↑1)(𝑧↑3) is (𝑥↑2)(𝑦↑3)(𝑧↑3), where the exponent vectors ⟨2, 2, 0⟩ and ⟨0, 1, 3⟩ are added to give ⟨2, 3, 3⟩. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplmon.s 𝑃 = (𝐼 mPoly 𝑅)
mplmon.b 𝐵 = (Base‘𝑃)
mplmon.z 0 = (0g𝑅)
mplmon.o 1 = (1r𝑅)
mplmon.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplmon.i (𝜑𝐼𝑊)
mplmon.r (𝜑𝑅 ∈ Ring)
mplmon.x (𝜑𝑋𝐷)
mplmonmul.t · = (.r𝑃)
mplmonmul.x (𝜑𝑌𝐷)
Assertion
Ref Expression
mplmonmul (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = (𝑋𝑓 + 𝑌), 1 , 0 )))
Distinct variable groups:   𝑦,𝐷   𝑓,𝐼   𝜑,𝑦   𝑦,𝑓,𝑋   𝑦, 0   𝑦, 1   𝑦,𝑅   𝑓,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑦,𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑓)   · (𝑦,𝑓)   1 (𝑓)   𝐼(𝑦)   𝑊(𝑦,𝑓)   0 (𝑓)

Proof of Theorem mplmonmul
Dummy variables 𝑗 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplmon.s . . 3 𝑃 = (𝐼 mPoly 𝑅)
2 mplmon.b . . 3 𝐵 = (Base‘𝑃)
3 eqid 2610 . . 3 (.r𝑅) = (.r𝑅)
4 mplmonmul.t . . 3 · = (.r𝑃)
5 mplmon.d . . 3 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
6 mplmon.z . . . 4 0 = (0g𝑅)
7 mplmon.o . . . 4 1 = (1r𝑅)
8 mplmon.i . . . 4 (𝜑𝐼𝑊)
9 mplmon.r . . . 4 (𝜑𝑅 ∈ Ring)
10 mplmon.x . . . 4 (𝜑𝑋𝐷)
111, 2, 6, 7, 5, 8, 9, 10mplmon 19284 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵)
12 mplmonmul.x . . . 4 (𝜑𝑌𝐷)
131, 2, 6, 7, 5, 8, 9, 12mplmon 19284 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) ∈ 𝐵)
141, 2, 3, 4, 5, 11, 13mplmul 19264 . 2 (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑘𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))))))
15 eqeq1 2614 . . . . 5 (𝑦 = 𝑘 → (𝑦 = (𝑋𝑓 + 𝑌) ↔ 𝑘 = (𝑋𝑓 + 𝑌)))
1615ifbid 4058 . . . 4 (𝑦 = 𝑘 → if(𝑦 = (𝑋𝑓 + 𝑌), 1 , 0 ) = if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 ))
1716cbvmptv 4678 . . 3 (𝑦𝐷 ↦ if(𝑦 = (𝑋𝑓 + 𝑌), 1 , 0 )) = (𝑘𝐷 ↦ if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 ))
18 simpr 476 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘})
1918snssd 4281 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → {𝑋} ⊆ {𝑥𝐷𝑥𝑟𝑘})
2019resmptd 5371 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋}) = (𝑗 ∈ {𝑋} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))))
2120oveq2d 6565 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋})) = (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))))))
229ad2antrr 758 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑅 ∈ Ring)
23 ringmnd 18379 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
2422, 23syl 17 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑅 ∈ Mnd)
2510ad2antrr 758 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑋𝐷)
26 iftrue 4042 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1 , 0 ) = 1 )
27 eqid 2610 . . . . . . . . . . . . 13 (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))
28 fvex 6113 . . . . . . . . . . . . . 14 (1r𝑅) ∈ V
297, 28eqeltri 2684 . . . . . . . . . . . . 13 1 ∈ V
3026, 27, 29fvmpt 6191 . . . . . . . . . . . 12 (𝑋𝐷 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋) = 1 )
3125, 30syl 17 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋) = 1 )
32 ssrab2 3650 . . . . . . . . . . . . 13 {𝑥𝐷𝑥𝑟𝑘} ⊆ 𝐷
338ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝐼𝑊)
34 simplr 788 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑘𝐷)
35 eqid 2610 . . . . . . . . . . . . . . 15 {𝑥𝐷𝑥𝑟𝑘} = {𝑥𝐷𝑥𝑟𝑘}
365, 35psrbagconcl 19194 . . . . . . . . . . . . . 14 ((𝐼𝑊𝑘𝐷𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑘𝑓𝑋) ∈ {𝑥𝐷𝑥𝑟𝑘})
3733, 34, 18, 36syl3anc 1318 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑘𝑓𝑋) ∈ {𝑥𝐷𝑥𝑟𝑘})
3832, 37sseldi 3566 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑘𝑓𝑋) ∈ 𝐷)
39 eqeq1 2614 . . . . . . . . . . . . . 14 (𝑦 = (𝑘𝑓𝑋) → (𝑦 = 𝑌 ↔ (𝑘𝑓𝑋) = 𝑌))
4039ifbid 4058 . . . . . . . . . . . . 13 (𝑦 = (𝑘𝑓𝑋) → if(𝑦 = 𝑌, 1 , 0 ) = if((𝑘𝑓𝑋) = 𝑌, 1 , 0 ))
41 eqid 2610 . . . . . . . . . . . . 13 (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))
42 fvex 6113 . . . . . . . . . . . . . . 15 (0g𝑅) ∈ V
436, 42eqeltri 2684 . . . . . . . . . . . . . 14 0 ∈ V
4429, 43ifex 4106 . . . . . . . . . . . . 13 if((𝑘𝑓𝑋) = 𝑌, 1 , 0 ) ∈ V
4540, 41, 44fvmpt 6191 . . . . . . . . . . . 12 ((𝑘𝑓𝑋) ∈ 𝐷 → ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑋)) = if((𝑘𝑓𝑋) = 𝑌, 1 , 0 ))
4638, 45syl 17 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑋)) = if((𝑘𝑓𝑋) = 𝑌, 1 , 0 ))
4731, 46oveq12d 6567 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑋))) = ( 1 (.r𝑅)if((𝑘𝑓𝑋) = 𝑌, 1 , 0 )))
48 eqid 2610 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
4948, 7ringidcl 18391 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
5048, 6ring0cl 18392 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
5149, 50ifcld 4081 . . . . . . . . . . . 12 (𝑅 ∈ Ring → if((𝑘𝑓𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅))
5222, 51syl 17 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → if((𝑘𝑓𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅))
5348, 3, 7ringlidm 18394 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ if((𝑘𝑓𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅)) → ( 1 (.r𝑅)if((𝑘𝑓𝑋) = 𝑌, 1 , 0 )) = if((𝑘𝑓𝑋) = 𝑌, 1 , 0 ))
5422, 52, 53syl2anc 691 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ( 1 (.r𝑅)if((𝑘𝑓𝑋) = 𝑌, 1 , 0 )) = if((𝑘𝑓𝑋) = 𝑌, 1 , 0 ))
555psrbagf 19186 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑊𝑘𝐷) → 𝑘:𝐼⟶ℕ0)
5633, 34, 55syl2anc 691 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑘:𝐼⟶ℕ0)
5756ffvelrnda 6267 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) ∧ 𝑧𝐼) → (𝑘𝑧) ∈ ℕ0)
588adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐷) → 𝐼𝑊)
5910adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐷) → 𝑋𝐷)
605psrbagf 19186 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑊𝑋𝐷) → 𝑋:𝐼⟶ℕ0)
6158, 59, 60syl2anc 691 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝑋:𝐼⟶ℕ0)
6261ffvelrnda 6267 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → (𝑋𝑧) ∈ ℕ0)
6362adantlr 747 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) ∧ 𝑧𝐼) → (𝑋𝑧) ∈ ℕ0)
645psrbagf 19186 . . . . . . . . . . . . . . . . . . . 20 ((𝐼𝑊𝑌𝐷) → 𝑌:𝐼⟶ℕ0)
658, 12, 64syl2anc 691 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑌:𝐼⟶ℕ0)
6665adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝑌:𝐼⟶ℕ0)
6766ffvelrnda 6267 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → (𝑌𝑧) ∈ ℕ0)
6867adantlr 747 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) ∧ 𝑧𝐼) → (𝑌𝑧) ∈ ℕ0)
69 nn0cn 11179 . . . . . . . . . . . . . . . . 17 ((𝑘𝑧) ∈ ℕ0 → (𝑘𝑧) ∈ ℂ)
70 nn0cn 11179 . . . . . . . . . . . . . . . . 17 ((𝑋𝑧) ∈ ℕ0 → (𝑋𝑧) ∈ ℂ)
71 nn0cn 11179 . . . . . . . . . . . . . . . . 17 ((𝑌𝑧) ∈ ℕ0 → (𝑌𝑧) ∈ ℂ)
72 subadd 10163 . . . . . . . . . . . . . . . . 17 (((𝑘𝑧) ∈ ℂ ∧ (𝑋𝑧) ∈ ℂ ∧ (𝑌𝑧) ∈ ℂ) → (((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ ((𝑋𝑧) + (𝑌𝑧)) = (𝑘𝑧)))
7369, 70, 71, 72syl3an 1360 . . . . . . . . . . . . . . . 16 (((𝑘𝑧) ∈ ℕ0 ∧ (𝑋𝑧) ∈ ℕ0 ∧ (𝑌𝑧) ∈ ℕ0) → (((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ ((𝑋𝑧) + (𝑌𝑧)) = (𝑘𝑧)))
7457, 63, 68, 73syl3anc 1318 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) ∧ 𝑧𝐼) → (((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ ((𝑋𝑧) + (𝑌𝑧)) = (𝑘𝑧)))
75 eqcom 2617 . . . . . . . . . . . . . . 15 (((𝑋𝑧) + (𝑌𝑧)) = (𝑘𝑧) ↔ (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧)))
7674, 75syl6bb 275 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) ∧ 𝑧𝐼) → (((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧))))
7776ralbidva 2968 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (∀𝑧𝐼 ((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ ∀𝑧𝐼 (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧))))
78 mpteqb 6207 . . . . . . . . . . . . . 14 (∀𝑧𝐼 ((𝑘𝑧) − (𝑋𝑧)) ∈ V → ((𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))) = (𝑧𝐼 ↦ (𝑌𝑧)) ↔ ∀𝑧𝐼 ((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧)))
79 ovex 6577 . . . . . . . . . . . . . . 15 ((𝑘𝑧) − (𝑋𝑧)) ∈ V
8079a1i 11 . . . . . . . . . . . . . 14 (𝑧𝐼 → ((𝑘𝑧) − (𝑋𝑧)) ∈ V)
8178, 80mprg 2910 . . . . . . . . . . . . 13 ((𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))) = (𝑧𝐼 ↦ (𝑌𝑧)) ↔ ∀𝑧𝐼 ((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧))
82 mpteqb 6207 . . . . . . . . . . . . . 14 (∀𝑧𝐼 (𝑘𝑧) ∈ V → ((𝑧𝐼 ↦ (𝑘𝑧)) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧))) ↔ ∀𝑧𝐼 (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧))))
83 fvex 6113 . . . . . . . . . . . . . . 15 (𝑘𝑧) ∈ V
8483a1i 11 . . . . . . . . . . . . . 14 (𝑧𝐼 → (𝑘𝑧) ∈ V)
8582, 84mprg 2910 . . . . . . . . . . . . 13 ((𝑧𝐼 ↦ (𝑘𝑧)) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧))) ↔ ∀𝑧𝐼 (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧)))
8677, 81, 853bitr4g 302 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ((𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))) = (𝑧𝐼 ↦ (𝑌𝑧)) ↔ (𝑧𝐼 ↦ (𝑘𝑧)) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧)))))
8756feqmptd 6159 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑘 = (𝑧𝐼 ↦ (𝑘𝑧)))
8861feqmptd 6159 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐷) → 𝑋 = (𝑧𝐼 ↦ (𝑋𝑧)))
8988adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑋 = (𝑧𝐼 ↦ (𝑋𝑧)))
9033, 57, 63, 87, 89offval2 6812 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑘𝑓𝑋) = (𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))))
9166feqmptd 6159 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐷) → 𝑌 = (𝑧𝐼 ↦ (𝑌𝑧)))
9291adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑌 = (𝑧𝐼 ↦ (𝑌𝑧)))
9390, 92eqeq12d 2625 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ((𝑘𝑓𝑋) = 𝑌 ↔ (𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))) = (𝑧𝐼 ↦ (𝑌𝑧))))
9458, 62, 67, 88, 91offval2 6812 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐷) → (𝑋𝑓 + 𝑌) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧))))
9594adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑋𝑓 + 𝑌) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧))))
9687, 95eqeq12d 2625 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑘 = (𝑋𝑓 + 𝑌) ↔ (𝑧𝐼 ↦ (𝑘𝑧)) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧)))))
9786, 93, 963bitr4d 299 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ((𝑘𝑓𝑋) = 𝑌𝑘 = (𝑋𝑓 + 𝑌)))
9897ifbid 4058 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → if((𝑘𝑓𝑋) = 𝑌, 1 , 0 ) = if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 ))
9947, 54, 983eqtrd 2648 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑋))) = if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 ))
10098, 52eqeltrrd 2689 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 ) ∈ (Base‘𝑅))
10199, 100eqeltrd 2688 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑋))) ∈ (Base‘𝑅))
102 fveq2 6103 . . . . . . . . . 10 (𝑗 = 𝑋 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋))
103 oveq2 6557 . . . . . . . . . . 11 (𝑗 = 𝑋 → (𝑘𝑓𝑗) = (𝑘𝑓𝑋))
104103fveq2d 6107 . . . . . . . . . 10 (𝑗 = 𝑋 → ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)) = ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑋)))
105102, 104oveq12d 6567 . . . . . . . . 9 (𝑗 = 𝑋 → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))) = (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑋))))
10648, 105gsumsn 18177 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 𝑋𝐷 ∧ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑋))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))))) = (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑋))))
10724, 25, 101, 106syl3anc 1318 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))))) = (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑋))))
10821, 107, 993eqtrd 2648 . . . . . 6 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 ))
1096gsum0 17101 . . . . . . 7 (𝑅 Σg ∅) = 0
110 disjsn 4192 . . . . . . . . 9 (({𝑥𝐷𝑥𝑟𝑘} ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘})
1119ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑅 ∈ Ring)
1121, 48, 2, 5, 11mplelf 19254 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
113112ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
114 simpr 476 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘})
11532, 114sseldi 3566 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑗𝐷)
116113, 115ffvelrnd 6268 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) ∈ (Base‘𝑅))
1171, 48, 2, 5, 13mplelf 19254 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )):𝐷⟶(Base‘𝑅))
118117ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )):𝐷⟶(Base‘𝑅))
1198ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝐼𝑊)
120 simplr 788 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → 𝑘𝐷)
1215, 35psrbagconcl 19194 . . . . . . . . . . . . . . . 16 ((𝐼𝑊𝑘𝐷𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑘𝑓𝑗) ∈ {𝑥𝐷𝑥𝑟𝑘})
122119, 120, 114, 121syl3anc 1318 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑘𝑓𝑗) ∈ {𝑥𝐷𝑥𝑟𝑘})
12332, 122sseldi 3566 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑘𝑓𝑗) ∈ 𝐷)
124118, 123ffvelrnd 6268 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)) ∈ (Base‘𝑅))
12548, 3ringcl 18384 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) ∈ (Base‘𝑅) ∧ ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)) ∈ (Base‘𝑅)) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))) ∈ (Base‘𝑅))
126111, 116, 124, 125syl3anc 1318 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))) ∈ (Base‘𝑅))
127 eqid 2610 . . . . . . . . . . . 12 (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) = (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))))
128126, 127fmptd 6292 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))):{𝑥𝐷𝑥𝑟𝑘}⟶(Base‘𝑅))
129 ffn 5958 . . . . . . . . . . 11 ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))):{𝑥𝐷𝑥𝑟𝑘}⟶(Base‘𝑅) → (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) Fn {𝑥𝐷𝑥𝑟𝑘})
130 fnresdisj 5915 . . . . . . . . . . 11 ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) Fn {𝑥𝐷𝑥𝑟𝑘} → (({𝑥𝐷𝑥𝑟𝑘} ∩ {𝑋}) = ∅ ↔ ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋}) = ∅))
131128, 129, 1303syl 18 . . . . . . . . . 10 ((𝜑𝑘𝐷) → (({𝑥𝐷𝑥𝑟𝑘} ∩ {𝑋}) = ∅ ↔ ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋}) = ∅))
132131biimpa 500 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ ({𝑥𝐷𝑥𝑟𝑘} ∩ {𝑋}) = ∅) → ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋}) = ∅)
133110, 132sylan2br 492 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋}) = ∅)
134133oveq2d 6565 . . . . . . 7 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋})) = (𝑅 Σg ∅))
13562nn0red 11229 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → (𝑋𝑧) ∈ ℝ)
136 nn0addge1 11216 . . . . . . . . . . . . . 14 (((𝑋𝑧) ∈ ℝ ∧ (𝑌𝑧) ∈ ℕ0) → (𝑋𝑧) ≤ ((𝑋𝑧) + (𝑌𝑧)))
137135, 67, 136syl2anc 691 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → (𝑋𝑧) ≤ ((𝑋𝑧) + (𝑌𝑧)))
138137ralrimiva 2949 . . . . . . . . . . . 12 ((𝜑𝑘𝐷) → ∀𝑧𝐼 (𝑋𝑧) ≤ ((𝑋𝑧) + (𝑌𝑧)))
139 ovex 6577 . . . . . . . . . . . . . 14 ((𝑋𝑧) + (𝑌𝑧)) ∈ V
140139a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → ((𝑋𝑧) + (𝑌𝑧)) ∈ V)
14158, 62, 140, 88, 94ofrfval2 6813 . . . . . . . . . . . 12 ((𝜑𝑘𝐷) → (𝑋𝑟 ≤ (𝑋𝑓 + 𝑌) ↔ ∀𝑧𝐼 (𝑋𝑧) ≤ ((𝑋𝑧) + (𝑌𝑧))))
142138, 141mpbird 246 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 𝑋𝑟 ≤ (𝑋𝑓 + 𝑌))
143 breq1 4586 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥𝑟 ≤ (𝑋𝑓 + 𝑌) ↔ 𝑋𝑟 ≤ (𝑋𝑓 + 𝑌)))
144143elrab 3331 . . . . . . . . . . 11 (𝑋 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝑋𝑓 + 𝑌)} ↔ (𝑋𝐷𝑋𝑟 ≤ (𝑋𝑓 + 𝑌)))
14559, 142, 144sylanbrc 695 . . . . . . . . . 10 ((𝜑𝑘𝐷) → 𝑋 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝑋𝑓 + 𝑌)})
146 breq2 4587 . . . . . . . . . . . 12 (𝑘 = (𝑋𝑓 + 𝑌) → (𝑥𝑟𝑘𝑥𝑟 ≤ (𝑋𝑓 + 𝑌)))
147146rabbidv 3164 . . . . . . . . . . 11 (𝑘 = (𝑋𝑓 + 𝑌) → {𝑥𝐷𝑥𝑟𝑘} = {𝑥𝐷𝑥𝑟 ≤ (𝑋𝑓 + 𝑌)})
148147eleq2d 2673 . . . . . . . . . 10 (𝑘 = (𝑋𝑓 + 𝑌) → (𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘} ↔ 𝑋 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝑋𝑓 + 𝑌)}))
149145, 148syl5ibrcom 236 . . . . . . . . 9 ((𝜑𝑘𝐷) → (𝑘 = (𝑋𝑓 + 𝑌) → 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}))
150149con3dimp 456 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ¬ 𝑘 = (𝑋𝑓 + 𝑌))
151150iffalsed 4047 . . . . . . 7 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 ) = 0 )
152109, 134, 1513eqtr4a 2670 . . . . . 6 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥𝑟𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 ))
153108, 152pm2.61dan 828 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 ))
1549adantr 480 . . . . . . 7 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
155 ringcmn 18404 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
156154, 155syl 17 . . . . . 6 ((𝜑𝑘𝐷) → 𝑅 ∈ CMnd)
1575psrbaglefi 19193 . . . . . . 7 ((𝐼𝑊𝑘𝐷) → {𝑥𝐷𝑥𝑟𝑘} ∈ Fin)
1588, 157sylan 487 . . . . . 6 ((𝜑𝑘𝐷) → {𝑥𝐷𝑥𝑟𝑘} ∈ Fin)
159 ssdif 3707 . . . . . . . . . . . 12 ({𝑥𝐷𝑥𝑟𝑘} ⊆ 𝐷 → ({𝑥𝐷𝑥𝑟𝑘} ∖ {𝑋}) ⊆ (𝐷 ∖ {𝑋}))
16032, 159ax-mp 5 . . . . . . . . . . 11 ({𝑥𝐷𝑥𝑟𝑘} ∖ {𝑋}) ⊆ (𝐷 ∖ {𝑋})
161160sseli 3564 . . . . . . . . . 10 (𝑗 ∈ ({𝑥𝐷𝑥𝑟𝑘} ∖ {𝑋}) → 𝑗 ∈ (𝐷 ∖ {𝑋}))
162112adantr 480 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
163 eldifsni 4261 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐷 ∖ {𝑋}) → 𝑦𝑋)
164163adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → 𝑦𝑋)
165164neneqd 2787 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → ¬ 𝑦 = 𝑋)
166165iffalsed 4047 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → if(𝑦 = 𝑋, 1 , 0 ) = 0 )
167 ovex 6577 . . . . . . . . . . . . . 14 (ℕ0𝑚 𝐼) ∈ V
1685, 167rabex2 4742 . . . . . . . . . . . . 13 𝐷 ∈ V
169168a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘𝐷) → 𝐷 ∈ V)
170166, 169suppss2 7216 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋})
17143a1i 11 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 0 ∈ V)
172162, 170, 169, 171suppssr 7213 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ (𝐷 ∖ {𝑋})) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = 0 )
173161, 172sylan2 490 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ ({𝑥𝐷𝑥𝑟𝑘} ∖ {𝑋})) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = 0 )
174173oveq1d 6564 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ ({𝑥𝐷𝑥𝑟𝑘} ∖ {𝑋})) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))) = ( 0 (.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))))
175 eldifi 3694 . . . . . . . . 9 (𝑗 ∈ ({𝑥𝐷𝑥𝑟𝑘} ∖ {𝑋}) → 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘})
17648, 3, 6ringlz 18410 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)) ∈ (Base‘𝑅)) → ( 0 (.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))) = 0 )
177111, 124, 176syl2anc 691 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘}) → ( 0 (.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))) = 0 )
178175, 177sylan2 490 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ ({𝑥𝐷𝑥𝑟𝑘} ∖ {𝑋})) → ( 0 (.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))) = 0 )
179174, 178eqtrd 2644 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ ({𝑥𝐷𝑥𝑟𝑘} ∖ {𝑋})) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))) = 0 )
180168rabex 4740 . . . . . . . 8 {𝑥𝐷𝑥𝑟𝑘} ∈ V
181180a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → {𝑥𝐷𝑥𝑟𝑘} ∈ V)
182179, 181suppss2 7216 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) supp 0 ) ⊆ {𝑋})
183168mptrabex 6392 . . . . . . . . 9 (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ∈ V
184 funmpt 5840 . . . . . . . . 9 Fun (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))))
185183, 184, 433pm3.2i 1232 . . . . . . . 8 ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ∧ 0 ∈ V)
186185a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ∧ 0 ∈ V))
187 snfi 7923 . . . . . . . 8 {𝑋} ∈ Fin
188187a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → {𝑋} ∈ Fin)
189 suppssfifsupp 8173 . . . . . . 7 ((((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ∧ 0 ∈ V) ∧ ({𝑋} ∈ Fin ∧ ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) supp 0 ) ⊆ {𝑋})) → (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) finSupp 0 )
190186, 188, 182, 189syl12anc 1316 . . . . . 6 ((𝜑𝑘𝐷) → (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) finSupp 0 )
19148, 6, 156, 158, 128, 182, 190gsumres 18137 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))) ↾ {𝑋})) = (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))))))
192153, 191eqtr3d 2646 . . . 4 ((𝜑𝑘𝐷) → if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 ) = (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗))))))
193192mpteq2dva 4672 . . 3 (𝜑 → (𝑘𝐷 ↦ if(𝑘 = (𝑋𝑓 + 𝑌), 1 , 0 )) = (𝑘𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))))))
19417, 193syl5eq 2656 . 2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑋𝑓 + 𝑌), 1 , 0 )) = (𝑘𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘𝑓𝑗)))))))
19514, 194eqtr4d 2647 1 (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = (𝑋𝑓 + 𝑌), 1 , 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  {crab 2900  Vcvv 3173  cdif 3537  cin 3539  wss 3540  c0 3874  ifcif 4036  {csn 4125   class class class wbr 4583  cmpt 4643  ccnv 5037  cres 5040  cima 5041  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  𝑟 cofr 6794   supp csupp 7182  𝑚 cmap 7744  Fincfn 7841   finSupp cfsupp 8158  cc 9813  cr 9814   + caddc 9818  cle 9954  cmin 10145  cn 10897  0cn0 11169  Basecbs 15695  .rcmulr 15769  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117  CMndccmn 18016  1rcur 18324  Ringcrg 18370   mPoly cmpl 19174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-tset 15787  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-psr 19177  df-mpl 19179
This theorem is referenced by:  mplcoe3  19287  mplcoe5  19289  mplmon2mul  19322
  Copyright terms: Public domain W3C validator