MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnghm Structured version   Visualization version   GIF version

Theorem psgnghm 19745
Description: The sign is a homomorphism from the finitary permutation group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnghm.s 𝑆 = (SymGrp‘𝐷)
psgnghm.n 𝑁 = (pmSgn‘𝐷)
psgnghm.f 𝐹 = (𝑆s dom 𝑁)
psgnghm.u 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1})
Assertion
Ref Expression
psgnghm (𝐷𝑉𝑁 ∈ (𝐹 GrpHom 𝑈))

Proof of Theorem psgnghm
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnghm.s . . . . . 6 𝑆 = (SymGrp‘𝐷)
2 eqid 2610 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2610 . . . . . 6 {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
4 psgnghm.n . . . . . 6 𝑁 = (pmSgn‘𝐷)
51, 2, 3, 4psgnfn 17744 . . . . 5 𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
6 fndm 5904 . . . . 5 (𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} → dom 𝑁 = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin})
75, 6ax-mp 5 . . . 4 dom 𝑁 = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
8 ssrab2 3650 . . . 4 {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} ⊆ (Base‘𝑆)
97, 8eqsstri 3598 . . 3 dom 𝑁 ⊆ (Base‘𝑆)
10 psgnghm.f . . . 4 𝐹 = (𝑆s dom 𝑁)
1110, 2ressbas2 15758 . . 3 (dom 𝑁 ⊆ (Base‘𝑆) → dom 𝑁 = (Base‘𝐹))
129, 11ax-mp 5 . 2 dom 𝑁 = (Base‘𝐹)
13 psgnghm.u . . 3 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1})
1413cnmsgnbas 19743 . 2 {1, -1} = (Base‘𝑈)
15 fvex 6113 . . . 4 (Base‘𝐹) ∈ V
1612, 15eqeltri 2684 . . 3 dom 𝑁 ∈ V
17 eqid 2610 . . . 4 (+g𝑆) = (+g𝑆)
1810, 17ressplusg 15818 . . 3 (dom 𝑁 ∈ V → (+g𝑆) = (+g𝐹))
1916, 18ax-mp 5 . 2 (+g𝑆) = (+g𝐹)
20 prex 4836 . . 3 {1, -1} ∈ V
21 eqid 2610 . . . . 5 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
22 cnfldmul 19573 . . . . 5 · = (.r‘ℂfld)
2321, 22mgpplusg 18316 . . . 4 · = (+g‘(mulGrp‘ℂfld))
2413, 23ressplusg 15818 . . 3 ({1, -1} ∈ V → · = (+g𝑈))
2520, 24ax-mp 5 . 2 · = (+g𝑈)
261, 4psgndmsubg 17745 . . 3 (𝐷𝑉 → dom 𝑁 ∈ (SubGrp‘𝑆))
2710subggrp 17420 . . 3 (dom 𝑁 ∈ (SubGrp‘𝑆) → 𝐹 ∈ Grp)
2826, 27syl 17 . 2 (𝐷𝑉𝐹 ∈ Grp)
2913cnmsgngrp 19744 . . 3 𝑈 ∈ Grp
3029a1i 11 . 2 (𝐷𝑉𝑈 ∈ Grp)
31 fnfun 5902 . . . . . 6 (𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} → Fun 𝑁)
325, 31ax-mp 5 . . . . 5 Fun 𝑁
33 funfn 5833 . . . . 5 (Fun 𝑁𝑁 Fn dom 𝑁)
3432, 33mpbi 219 . . . 4 𝑁 Fn dom 𝑁
3534a1i 11 . . 3 (𝐷𝑉𝑁 Fn dom 𝑁)
36 eqid 2610 . . . . . 6 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
371, 36, 4psgnvali 17751 . . . . 5 (𝑥 ∈ dom 𝑁 → ∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(#‘𝑧))))
38 lencl 13179 . . . . . . . . . . 11 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → (#‘𝑧) ∈ ℕ0)
3938nn0zd 11356 . . . . . . . . . 10 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → (#‘𝑧) ∈ ℤ)
40 m1expcl2 12744 . . . . . . . . . . 11 ((#‘𝑧) ∈ ℤ → (-1↑(#‘𝑧)) ∈ {-1, 1})
41 prcom 4211 . . . . . . . . . . 11 {-1, 1} = {1, -1}
4240, 41syl6eleq 2698 . . . . . . . . . 10 ((#‘𝑧) ∈ ℤ → (-1↑(#‘𝑧)) ∈ {1, -1})
4339, 42syl 17 . . . . . . . . 9 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → (-1↑(#‘𝑧)) ∈ {1, -1})
4443adantl 481 . . . . . . . 8 ((𝐷𝑉𝑧 ∈ Word ran (pmTrsp‘𝐷)) → (-1↑(#‘𝑧)) ∈ {1, -1})
45 eleq1a 2683 . . . . . . . 8 ((-1↑(#‘𝑧)) ∈ {1, -1} → ((𝑁𝑥) = (-1↑(#‘𝑧)) → (𝑁𝑥) ∈ {1, -1}))
4644, 45syl 17 . . . . . . 7 ((𝐷𝑉𝑧 ∈ Word ran (pmTrsp‘𝐷)) → ((𝑁𝑥) = (-1↑(#‘𝑧)) → (𝑁𝑥) ∈ {1, -1}))
4746adantld 482 . . . . . 6 ((𝐷𝑉𝑧 ∈ Word ran (pmTrsp‘𝐷)) → ((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(#‘𝑧))) → (𝑁𝑥) ∈ {1, -1}))
4847rexlimdva 3013 . . . . 5 (𝐷𝑉 → (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(#‘𝑧))) → (𝑁𝑥) ∈ {1, -1}))
4937, 48syl5 33 . . . 4 (𝐷𝑉 → (𝑥 ∈ dom 𝑁 → (𝑁𝑥) ∈ {1, -1}))
5049ralrimiv 2948 . . 3 (𝐷𝑉 → ∀𝑥 ∈ dom 𝑁(𝑁𝑥) ∈ {1, -1})
51 ffnfv 6295 . . 3 (𝑁:dom 𝑁⟶{1, -1} ↔ (𝑁 Fn dom 𝑁 ∧ ∀𝑥 ∈ dom 𝑁(𝑁𝑥) ∈ {1, -1}))
5235, 50, 51sylanbrc 695 . 2 (𝐷𝑉𝑁:dom 𝑁⟶{1, -1})
531, 36, 4psgnvali 17751 . . . . . 6 (𝑦 ∈ dom 𝑁 → ∃𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(#‘𝑤))))
5437, 53anim12i 588 . . . . 5 ((𝑥 ∈ dom 𝑁𝑦 ∈ dom 𝑁) → (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(#‘𝑧))) ∧ ∃𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(#‘𝑤)))))
55 reeanv 3086 . . . . 5 (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)∃𝑤 ∈ Word ran (pmTrsp‘𝐷)((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(#‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(#‘𝑤)))) ↔ (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(#‘𝑧))) ∧ ∃𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(#‘𝑤)))))
5654, 55sylibr 223 . . . 4 ((𝑥 ∈ dom 𝑁𝑦 ∈ dom 𝑁) → ∃𝑧 ∈ Word ran (pmTrsp‘𝐷)∃𝑤 ∈ Word ran (pmTrsp‘𝐷)((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(#‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(#‘𝑤)))))
57 ccatcl 13212 . . . . . . . 8 ((𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷)) → (𝑧 ++ 𝑤) ∈ Word ran (pmTrsp‘𝐷))
581, 36, 4psgnvalii 17752 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑧 ++ 𝑤) ∈ Word ran (pmTrsp‘𝐷)) → (𝑁‘(𝑆 Σg (𝑧 ++ 𝑤))) = (-1↑(#‘(𝑧 ++ 𝑤))))
5957, 58sylan2 490 . . . . . . 7 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑁‘(𝑆 Σg (𝑧 ++ 𝑤))) = (-1↑(#‘(𝑧 ++ 𝑤))))
601symggrp 17643 . . . . . . . . . . 11 (𝐷𝑉𝑆 ∈ Grp)
61 grpmnd 17252 . . . . . . . . . . 11 (𝑆 ∈ Grp → 𝑆 ∈ Mnd)
6260, 61syl 17 . . . . . . . . . 10 (𝐷𝑉𝑆 ∈ Mnd)
6336, 1, 2symgtrf 17712 . . . . . . . . . . . 12 ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆)
64 sswrd 13168 . . . . . . . . . . . 12 (ran (pmTrsp‘𝐷) ⊆ (Base‘𝑆) → Word ran (pmTrsp‘𝐷) ⊆ Word (Base‘𝑆))
6563, 64ax-mp 5 . . . . . . . . . . 11 Word ran (pmTrsp‘𝐷) ⊆ Word (Base‘𝑆)
6665sseli 3564 . . . . . . . . . 10 (𝑧 ∈ Word ran (pmTrsp‘𝐷) → 𝑧 ∈ Word (Base‘𝑆))
6765sseli 3564 . . . . . . . . . 10 (𝑤 ∈ Word ran (pmTrsp‘𝐷) → 𝑤 ∈ Word (Base‘𝑆))
682, 17gsumccat 17201 . . . . . . . . . 10 ((𝑆 ∈ Mnd ∧ 𝑧 ∈ Word (Base‘𝑆) ∧ 𝑤 ∈ Word (Base‘𝑆)) → (𝑆 Σg (𝑧 ++ 𝑤)) = ((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤)))
6962, 66, 67, 68syl3an 1360 . . . . . . . . 9 ((𝐷𝑉𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷)) → (𝑆 Σg (𝑧 ++ 𝑤)) = ((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤)))
70693expb 1258 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑆 Σg (𝑧 ++ 𝑤)) = ((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤)))
7170fveq2d 6107 . . . . . . 7 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑁‘(𝑆 Σg (𝑧 ++ 𝑤))) = (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))))
72 ccatlen 13213 . . . . . . . . . 10 ((𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷)) → (#‘(𝑧 ++ 𝑤)) = ((#‘𝑧) + (#‘𝑤)))
7372adantl 481 . . . . . . . . 9 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (#‘(𝑧 ++ 𝑤)) = ((#‘𝑧) + (#‘𝑤)))
7473oveq2d 6565 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (-1↑(#‘(𝑧 ++ 𝑤))) = (-1↑((#‘𝑧) + (#‘𝑤))))
75 neg1cn 11001 . . . . . . . . . 10 -1 ∈ ℂ
7675a1i 11 . . . . . . . . 9 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → -1 ∈ ℂ)
77 lencl 13179 . . . . . . . . . 10 (𝑤 ∈ Word ran (pmTrsp‘𝐷) → (#‘𝑤) ∈ ℕ0)
7877ad2antll 761 . . . . . . . . 9 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (#‘𝑤) ∈ ℕ0)
7938ad2antrl 760 . . . . . . . . 9 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (#‘𝑧) ∈ ℕ0)
8076, 78, 79expaddd 12872 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (-1↑((#‘𝑧) + (#‘𝑤))) = ((-1↑(#‘𝑧)) · (-1↑(#‘𝑤))))
8174, 80eqtrd 2644 . . . . . . 7 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (-1↑(#‘(𝑧 ++ 𝑤))) = ((-1↑(#‘𝑧)) · (-1↑(#‘𝑤))))
8259, 71, 813eqtr3d 2652 . . . . . 6 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))) = ((-1↑(#‘𝑧)) · (-1↑(#‘𝑤))))
83 oveq12 6558 . . . . . . . . 9 ((𝑥 = (𝑆 Σg 𝑧) ∧ 𝑦 = (𝑆 Σg 𝑤)) → (𝑥(+g𝑆)𝑦) = ((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤)))
8483fveq2d 6107 . . . . . . . 8 ((𝑥 = (𝑆 Σg 𝑧) ∧ 𝑦 = (𝑆 Σg 𝑤)) → (𝑁‘(𝑥(+g𝑆)𝑦)) = (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))))
85 oveq12 6558 . . . . . . . 8 (((𝑁𝑥) = (-1↑(#‘𝑧)) ∧ (𝑁𝑦) = (-1↑(#‘𝑤))) → ((𝑁𝑥) · (𝑁𝑦)) = ((-1↑(#‘𝑧)) · (-1↑(#‘𝑤))))
8684, 85eqeqan12d 2626 . . . . . . 7 (((𝑥 = (𝑆 Σg 𝑧) ∧ 𝑦 = (𝑆 Σg 𝑤)) ∧ ((𝑁𝑥) = (-1↑(#‘𝑧)) ∧ (𝑁𝑦) = (-1↑(#‘𝑤)))) → ((𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦)) ↔ (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))) = ((-1↑(#‘𝑧)) · (-1↑(#‘𝑤)))))
8786an4s 865 . . . . . 6 (((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(#‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(#‘𝑤)))) → ((𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦)) ↔ (𝑁‘((𝑆 Σg 𝑧)(+g𝑆)(𝑆 Σg 𝑤))) = ((-1↑(#‘𝑧)) · (-1↑(#‘𝑤)))))
8882, 87syl5ibrcom 236 . . . . 5 ((𝐷𝑉 ∧ (𝑧 ∈ Word ran (pmTrsp‘𝐷) ∧ 𝑤 ∈ Word ran (pmTrsp‘𝐷))) → (((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(#‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(#‘𝑤)))) → (𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦))))
8988rexlimdvva 3020 . . . 4 (𝐷𝑉 → (∃𝑧 ∈ Word ran (pmTrsp‘𝐷)∃𝑤 ∈ Word ran (pmTrsp‘𝐷)((𝑥 = (𝑆 Σg 𝑧) ∧ (𝑁𝑥) = (-1↑(#‘𝑧))) ∧ (𝑦 = (𝑆 Σg 𝑤) ∧ (𝑁𝑦) = (-1↑(#‘𝑤)))) → (𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦))))
9056, 89syl5 33 . . 3 (𝐷𝑉 → ((𝑥 ∈ dom 𝑁𝑦 ∈ dom 𝑁) → (𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦))))
9190imp 444 . 2 ((𝐷𝑉 ∧ (𝑥 ∈ dom 𝑁𝑦 ∈ dom 𝑁)) → (𝑁‘(𝑥(+g𝑆)𝑦)) = ((𝑁𝑥) · (𝑁𝑦)))
9212, 14, 19, 25, 28, 30, 52, 91isghmd 17492 1 (𝐷𝑉𝑁 ∈ (𝐹 GrpHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  {cpr 4127   I cid 4948  dom cdm 5038  ran crn 5039  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  1c1 9816   + caddc 9818   · cmul 9820  -cneg 10146  0cn0 11169  cz 11254  cexp 12722  #chash 12979  Word cword 13146   ++ cconcat 13148  Basecbs 15695  s cress 15696  +gcplusg 15768   Σg cgsu 15924  Mndcmnd 17117  Grpcgrp 17245  SubGrpcsubg 17411   GrpHom cghm 17480  SymGrpcsymg 17620  pmTrspcpmtr 17684  pmSgncpsgn 17732  mulGrpcmgp 18312  fldccnfld 19567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-xor 1457  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-splice 13159  df-reverse 13160  df-s2 13444  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-subg 17414  df-ghm 17481  df-gim 17524  df-oppg 17599  df-symg 17621  df-pmtr 17685  df-psgn 17734  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-cnfld 19568
This theorem is referenced by:  psgnghm2  19746  evpmss  19751
  Copyright terms: Public domain W3C validator