Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evpmss | Structured version Visualization version GIF version |
Description: Even permutations are permutations. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
evpmss.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
evpmss.p | ⊢ 𝑃 = (Base‘𝑆) |
Ref | Expression |
---|---|
evpmss | ⊢ (pmEven‘𝐷) ⊆ 𝑃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6103 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (pmSgn‘𝑑) = (pmSgn‘𝐷)) | |
2 | 1 | cnveqd 5220 | . . . . 5 ⊢ (𝑑 = 𝐷 → ◡(pmSgn‘𝑑) = ◡(pmSgn‘𝐷)) |
3 | 2 | imaeq1d 5384 | . . . 4 ⊢ (𝑑 = 𝐷 → (◡(pmSgn‘𝑑) “ {1}) = (◡(pmSgn‘𝐷) “ {1})) |
4 | df-evpm 17735 | . . . 4 ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) | |
5 | fvex 6113 | . . . . . 6 ⊢ (pmSgn‘𝐷) ∈ V | |
6 | 5 | cnvex 7006 | . . . . 5 ⊢ ◡(pmSgn‘𝐷) ∈ V |
7 | 6 | imaex 6996 | . . . 4 ⊢ (◡(pmSgn‘𝐷) “ {1}) ∈ V |
8 | 3, 4, 7 | fvmpt 6191 | . . 3 ⊢ (𝐷 ∈ V → (pmEven‘𝐷) = (◡(pmSgn‘𝐷) “ {1})) |
9 | cnvimass 5404 | . . . 4 ⊢ (◡(pmSgn‘𝐷) “ {1}) ⊆ dom (pmSgn‘𝐷) | |
10 | evpmss.s | . . . . . . 7 ⊢ 𝑆 = (SymGrp‘𝐷) | |
11 | eqid 2610 | . . . . . . 7 ⊢ (pmSgn‘𝐷) = (pmSgn‘𝐷) | |
12 | eqid 2610 | . . . . . . 7 ⊢ (𝑆 ↾s dom (pmSgn‘𝐷)) = (𝑆 ↾s dom (pmSgn‘𝐷)) | |
13 | eqid 2610 | . . . . . . 7 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
14 | 10, 11, 12, 13 | psgnghm 19745 | . . . . . 6 ⊢ (𝐷 ∈ V → (pmSgn‘𝐷) ∈ ((𝑆 ↾s dom (pmSgn‘𝐷)) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
15 | eqid 2610 | . . . . . . 7 ⊢ (Base‘(𝑆 ↾s dom (pmSgn‘𝐷))) = (Base‘(𝑆 ↾s dom (pmSgn‘𝐷))) | |
16 | eqid 2610 | . . . . . . 7 ⊢ (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) | |
17 | 15, 16 | ghmf 17487 | . . . . . 6 ⊢ ((pmSgn‘𝐷) ∈ ((𝑆 ↾s dom (pmSgn‘𝐷)) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (pmSgn‘𝐷):(Base‘(𝑆 ↾s dom (pmSgn‘𝐷)))⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
18 | fdm 5964 | . . . . . 6 ⊢ ((pmSgn‘𝐷):(Base‘(𝑆 ↾s dom (pmSgn‘𝐷)))⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) → dom (pmSgn‘𝐷) = (Base‘(𝑆 ↾s dom (pmSgn‘𝐷)))) | |
19 | 14, 17, 18 | 3syl 18 | . . . . 5 ⊢ (𝐷 ∈ V → dom (pmSgn‘𝐷) = (Base‘(𝑆 ↾s dom (pmSgn‘𝐷)))) |
20 | evpmss.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝑆) | |
21 | 12, 20 | ressbasss 15759 | . . . . 5 ⊢ (Base‘(𝑆 ↾s dom (pmSgn‘𝐷))) ⊆ 𝑃 |
22 | 19, 21 | syl6eqss 3618 | . . . 4 ⊢ (𝐷 ∈ V → dom (pmSgn‘𝐷) ⊆ 𝑃) |
23 | 9, 22 | syl5ss 3579 | . . 3 ⊢ (𝐷 ∈ V → (◡(pmSgn‘𝐷) “ {1}) ⊆ 𝑃) |
24 | 8, 23 | eqsstrd 3602 | . 2 ⊢ (𝐷 ∈ V → (pmEven‘𝐷) ⊆ 𝑃) |
25 | fvprc 6097 | . . 3 ⊢ (¬ 𝐷 ∈ V → (pmEven‘𝐷) = ∅) | |
26 | 0ss 3924 | . . 3 ⊢ ∅ ⊆ 𝑃 | |
27 | 25, 26 | syl6eqss 3618 | . 2 ⊢ (¬ 𝐷 ∈ V → (pmEven‘𝐷) ⊆ 𝑃) |
28 | 24, 27 | pm2.61i 175 | 1 ⊢ (pmEven‘𝐷) ⊆ 𝑃 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ⊆ wss 3540 ∅c0 3874 {csn 4125 {cpr 4127 ◡ccnv 5037 dom cdm 5038 “ cima 5041 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 1c1 9816 -cneg 10146 Basecbs 15695 ↾s cress 15696 GrpHom cghm 17480 SymGrpcsymg 17620 pmSgncpsgn 17732 pmEvencevpm 17733 mulGrpcmgp 18312 ℂfldccnfld 19567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-addf 9894 ax-mulf 9895 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-xor 1457 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-ot 4134 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-tpos 7239 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-xnn0 11241 df-z 11255 df-dec 11370 df-uz 11564 df-rp 11709 df-fz 12198 df-fzo 12335 df-seq 12664 df-exp 12723 df-hash 12980 df-word 13154 df-lsw 13155 df-concat 13156 df-s1 13157 df-substr 13158 df-splice 13159 df-reverse 13160 df-s2 13444 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-starv 15783 df-tset 15787 df-ple 15788 df-ds 15791 df-unif 15792 df-0g 15925 df-gsum 15926 df-mre 16069 df-mrc 16070 df-acs 16072 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-mhm 17158 df-submnd 17159 df-grp 17248 df-minusg 17249 df-subg 17414 df-ghm 17481 df-gim 17524 df-oppg 17599 df-symg 17621 df-pmtr 17685 df-psgn 17734 df-evpm 17735 df-cmn 18018 df-abl 18019 df-mgp 18313 df-ur 18325 df-ring 18372 df-cring 18373 df-oppr 18446 df-dvdsr 18464 df-unit 18465 df-invr 18495 df-dvr 18506 df-drng 18572 df-cnfld 19568 |
This theorem is referenced by: zrhpsgnevpm 19756 evpmodpmf1o 19761 mdetralt 20233 |
Copyright terms: Public domain | W3C validator |