Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval5lem1 Structured version   Visualization version   GIF version

Theorem ovolval5lem1 39542
 Description: |- ( ph -> ( sum^ (𝑛 ∈ ℕ ↦ (vol ( ( A - ( W / ( 2 ^ n ) ) ) (,) B ) ) ) ) <_ ( ( sum^ (𝑛 ∈ ℕ ↦ (vol ( A [,) B ) ) ) ) +e W ) ) (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval5lem1.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
ovolval5lem1.b ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
ovolval5lem1.w (𝜑𝑊 ∈ ℝ+)
ovolval5lem1.c 𝐶 = {𝑛 ∈ ℕ ∣ 𝐴 < 𝐵}
Assertion
Ref Expression
ovolval5lem1 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
Distinct variable groups:   𝐶,𝑛   𝑛,𝑊   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)

Proof of Theorem ovolval5lem1
StepHypRef Expression
1 nfv 1830 . . 3 𝑛𝜑
2 nnex 10903 . . . 4 ℕ ∈ V
32a1i 11 . . 3 (𝜑 → ℕ ∈ V)
4 volf 23104 . . . . 5 vol:dom vol⟶(0[,]+∞)
54a1i 11 . . . 4 ((𝜑𝑛 ∈ ℕ) → vol:dom vol⟶(0[,]+∞))
6 ioombl 23140 . . . . 5 ((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵) ∈ dom vol
76a1i 11 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵) ∈ dom vol)
85, 7ffvelrnd 6268 . . 3 ((𝜑𝑛 ∈ ℕ) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) ∈ (0[,]+∞))
91, 3, 8sge0xrclmpt 39321 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ∈ ℝ*)
10 0xr 9965 . . . . 5 0 ∈ ℝ*
1110a1i 11 . . . 4 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ*)
12 pnfxr 9971 . . . . 5 +∞ ∈ ℝ*
1312a1i 11 . . . 4 ((𝜑𝑛 ∈ ℕ) → +∞ ∈ ℝ*)
14 ovolval5lem1.a . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
15 ovolval5lem1.b . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
16 volicore 39471 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) ∈ ℝ)
1714, 15, 16syl2anc 691 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐴[,)𝐵)) ∈ ℝ)
18 ovolval5lem1.w . . . . . . . . 9 (𝜑𝑊 ∈ ℝ+)
1918rpred 11748 . . . . . . . 8 (𝜑𝑊 ∈ ℝ)
2019adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
21 2nn 11062 . . . . . . . . . . 11 2 ∈ ℕ
2221a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → 2 ∈ ℕ)
23 nnnn0 11176 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
24 nnexpcl 12735 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
2522, 23, 24syl2anc 691 . . . . . . . . 9 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
2625nnred 10912 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ)
2726adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ)
2825nnne0d 10942 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ≠ 0)
2928adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ≠ 0)
3020, 27, 29redivcld 10732 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℝ)
3117, 30readdcld 9948 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ)
3231rexrd 9968 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ*)
3315rexrd 9968 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
34 icombl 23139 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol)
3514, 33, 34syl2anc 691 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴[,)𝐵) ∈ dom vol)
36 volge0 38853 . . . . . 6 ((𝐴[,)𝐵) ∈ dom vol → 0 ≤ (vol‘(𝐴[,)𝐵)))
3735, 36syl 17 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (vol‘(𝐴[,)𝐵)))
3818adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ+)
3925nnrpd 11746 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+)
4039adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
4138, 40rpdivcld 11765 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℝ+)
4241rpge0d 11752 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (𝑊 / (2↑𝑛)))
4317, 30, 37, 42addge0d 10482 . . . 4 ((𝜑𝑛 ∈ ℕ) → 0 ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
44 rexr 9964 . . . . . 6 (((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ*)
4512a1i 11 . . . . . 6 (((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ → +∞ ∈ ℝ*)
46 ltpnf 11830 . . . . . 6 (((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) < +∞)
4744, 45, 46xrltled 38427 . . . . 5 (((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ ℝ → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ≤ +∞)
4831, 47syl 17 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ≤ +∞)
4911, 13, 32, 43, 48eliccxrd 38600 . . 3 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) ∈ (0[,]+∞))
501, 3, 49sge0xrclmpt 39321 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))) ∈ ℝ*)
515, 35ffvelrnd 6268 . . . 4 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐴[,)𝐵)) ∈ (0[,]+∞))
521, 3, 51sge0xrclmpt 39321 . . 3 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) ∈ ℝ*)
5319rexrd 9968 . . 3 (𝜑𝑊 ∈ ℝ*)
5452, 53xaddcld 12003 . 2 (𝜑 → ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊) ∈ ℝ*)
5514, 30resubcld 10337 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴 − (𝑊 / (2↑𝑛))) ∈ ℝ)
56 volioore 38883 . . . . . . . 8 (((𝐴 − (𝑊 / (2↑𝑛))) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0))
5755, 15, 56syl2anc 691 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0))
5857adantr 480 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0))
59 iftrue 4042 . . . . . . 7 ((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵 → if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0) = (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))))
6059adantl 481 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0) = (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))))
6115recnd 9947 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℂ)
6214recnd 9947 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℂ)
6330recnd 9947 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℂ)
6461, 62, 63subsubd 10299 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))) = ((𝐵𝐴) + (𝑊 / (2↑𝑛))))
6564adantr 480 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))) = ((𝐵𝐴) + (𝑊 / (2↑𝑛))))
6658, 60, 653eqtrd 2648 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = ((𝐵𝐴) + (𝑊 / (2↑𝑛))))
6715, 14resubcld 10337 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵𝐴) ∈ ℝ)
6814, 15sublevolico 38877 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵𝐴) ≤ (vol‘(𝐴[,)𝐵)))
6967, 17, 30, 68leadd1dd 10520 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝐴) + (𝑊 / (2↑𝑛))) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7069adantr 480 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → ((𝐵𝐴) + (𝑊 / (2↑𝑛))) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7166, 70eqbrtrd 4605 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7257adantr 480 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0))
73 iffalse 4045 . . . . . . 7 (¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵 → if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0) = 0)
7473adantl 481 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → if((𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵, (𝐵 − (𝐴 − (𝑊 / (2↑𝑛)))), 0) = 0)
7572, 74eqtrd 2644 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) = 0)
7643adantr 480 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → 0 ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7775, 76eqbrtrd 4605 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝐴 − (𝑊 / (2↑𝑛))) ≤ 𝐵) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
7871, 77pm2.61dan 828 . . 3 ((𝜑𝑛 ∈ ℕ) → (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)) ≤ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
791, 3, 8, 49, 78sge0lempt 39303 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))))
8017, 30rexaddd 11939 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛))) = ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))
8180eqcomd 2616 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))) = ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛))))
8281mpteq2dva 4672 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛)))) = (𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛)))))
8382fveq2d 6107 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))) = (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛))))))
8430rexrd 9968 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℝ*)
85 rexr 9964 . . . . . . . 8 ((𝑊 / (2↑𝑛)) ∈ ℝ → (𝑊 / (2↑𝑛)) ∈ ℝ*)
8612a1i 11 . . . . . . . 8 ((𝑊 / (2↑𝑛)) ∈ ℝ → +∞ ∈ ℝ*)
87 ltpnf 11830 . . . . . . . 8 ((𝑊 / (2↑𝑛)) ∈ ℝ → (𝑊 / (2↑𝑛)) < +∞)
8885, 86, 87xrltled 38427 . . . . . . 7 ((𝑊 / (2↑𝑛)) ∈ ℝ → (𝑊 / (2↑𝑛)) ≤ +∞)
8930, 88syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ≤ +∞)
9011, 13, 84, 42, 89eliccxrd 38600 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ (0[,]+∞))
911, 3, 51, 90sge0xadd 39328 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) +𝑒 (𝑊 / (2↑𝑛))))) = ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒^‘(𝑛 ∈ ℕ ↦ (𝑊 / (2↑𝑛))))))
9210a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℝ*)
9312a1i 11 . . . . . . 7 (𝜑 → +∞ ∈ ℝ*)
9418rpge0d 11752 . . . . . . 7 (𝜑 → 0 ≤ 𝑊)
9519ltpnfd 11831 . . . . . . 7 (𝜑𝑊 < +∞)
9692, 93, 53, 94, 95elicod 12095 . . . . . 6 (𝜑𝑊 ∈ (0[,)+∞))
9796sge0ad2en 39324 . . . . 5 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑊 / (2↑𝑛)))) = 𝑊)
9897oveq2d 6565 . . . 4 (𝜑 → ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒^‘(𝑛 ∈ ℕ ↦ (𝑊 / (2↑𝑛))))) = ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
9983, 91, 983eqtrd 2648 . . 3 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))) = ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
10050, 99xreqled 38487 . 2 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((vol‘(𝐴[,)𝐵)) + (𝑊 / (2↑𝑛))))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
1019, 50, 54, 79, 100xrletrd 11869 1 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((𝐴 − (𝑊 / (2↑𝑛)))(,)𝐵)))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐴[,)𝐵)))) +𝑒 𝑊))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  {crab 2900  Vcvv 3173  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  0cc0 9815   + caddc 9818  +∞cpnf 9950  ℝ*cxr 9952   < clt 9953   ≤ cle 9954   − cmin 10145   / cdiv 10563  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ℝ+crp 11708   +𝑒 cxad 11820  (,)cioo 12046  [,)cico 12048  [,]cicc 12049  ↑cexp 12722  volcvol 23039  Σ^csumge0 39255 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041  df-sumge0 39256 This theorem is referenced by:  ovolval5lem2  39543
 Copyright terms: Public domain W3C validator