Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sublevolico Structured version   Visualization version   GIF version

Theorem sublevolico 38877
 Description: The Lebesgue measure of a left-closed, right-open interval is greater or equal to the difference of the two bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
sublevolico.a (𝜑𝐴 ∈ ℝ)
sublevolico.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
sublevolico (𝜑 → (𝐵𝐴) ≤ (vol‘(𝐴[,)𝐵)))

Proof of Theorem sublevolico
StepHypRef Expression
1 sublevolico.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
2 sublevolico.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
31, 2resubcld 10337 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℝ)
4 eqidd 2611 . . . . 5 (𝜑 → (𝐵𝐴) = (𝐵𝐴))
53, 4eqled 10019 . . . 4 (𝜑 → (𝐵𝐴) ≤ (𝐵𝐴))
65adantr 480 . . 3 ((𝜑𝐴 < 𝐵) → (𝐵𝐴) ≤ (𝐵𝐴))
7 volico 38876 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
82, 1, 7syl2anc 691 . . . . 5 (𝜑 → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
98adantr 480 . . . 4 ((𝜑𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
10 iftrue 4042 . . . . 5 (𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
1110adantl 481 . . . 4 ((𝜑𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
129, 11eqtr2d 2645 . . 3 ((𝜑𝐴 < 𝐵) → (𝐵𝐴) = (vol‘(𝐴[,)𝐵)))
136, 12breqtrd 4609 . 2 ((𝜑𝐴 < 𝐵) → (𝐵𝐴) ≤ (vol‘(𝐴[,)𝐵)))
14 simpr 476 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵)
151, 2lenltd 10062 . . . . . 6 (𝜑 → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
1615adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
1714, 16mpbird 246 . . . 4 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
181adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
192adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
2018, 19suble0d 10497 . . . 4 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → ((𝐵𝐴) ≤ 0 ↔ 𝐵𝐴))
2117, 20mpbird 246 . . 3 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵𝐴) ≤ 0)
228adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
23 iffalse 4045 . . . . 5 𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
2423adantl 481 . . . 4 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
2522, 24eqtr2d 2645 . . 3 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → 0 = (vol‘(𝐴[,)𝐵)))
2621, 25breqtrd 4609 . 2 ((𝜑 ∧ ¬ 𝐴 < 𝐵) → (𝐵𝐴) ≤ (vol‘(𝐴[,)𝐵)))
2713, 26pm2.61dan 828 1 (𝜑 → (𝐵𝐴) ≤ (vol‘(𝐴[,)𝐵)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ifcif 4036   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  0cc0 9815   < clt 9953   ≤ cle 9954   − cmin 10145  [,)cico 12048  volcvol 23039 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041 This theorem is referenced by:  ovolval5lem1  39542
 Copyright terms: Public domain W3C validator