MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mtest Structured version   Visualization version   GIF version

Theorem mtest 23962
Description: The Weierstrass M-test. If 𝐹 is a sequence of functions which are uniformly bounded by the convergent sequence 𝑀(𝑘), then the series generated by the sequence 𝐹 converges uniformly. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
mtest.z 𝑍 = (ℤ𝑁)
mtest.n (𝜑𝑁 ∈ ℤ)
mtest.s (𝜑𝑆𝑉)
mtest.f (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
mtest.m (𝜑𝑀𝑊)
mtest.c ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℝ)
mtest.l ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
mtest.d (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ )
Assertion
Ref Expression
mtest (𝜑 → seq𝑁( ∘𝑓 + , 𝐹) ∈ dom (⇝𝑢𝑆))
Distinct variable groups:   𝑧,𝑘,𝐹   𝑘,𝑀,𝑧   𝑘,𝑁,𝑧   𝜑,𝑘,𝑧   𝑘,𝑍,𝑧   𝑆,𝑘,𝑧
Allowed substitution hints:   𝑉(𝑧,𝑘)   𝑊(𝑧,𝑘)

Proof of Theorem mtest
Dummy variables 𝑖 𝑗 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mtest.n . . . 4 (𝜑𝑁 ∈ ℤ)
2 mtest.d . . . 4 (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ )
3 mtest.z . . . . 5 𝑍 = (ℤ𝑁)
43climcau 14249 . . . 4 ((𝑁 ∈ ℤ ∧ seq𝑁( + , 𝑀) ∈ dom ⇝ ) → ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟)
51, 2, 4syl2anc 691 . . 3 (𝜑 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟)
6 seqfn 12675 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → seq𝑁( ∘𝑓 + , 𝐹) Fn (ℤ𝑁))
71, 6syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → seq𝑁( ∘𝑓 + , 𝐹) Fn (ℤ𝑁))
83fneq2i 5900 . . . . . . . . . . . . . . . . . 18 (seq𝑁( ∘𝑓 + , 𝐹) Fn 𝑍 ↔ seq𝑁( ∘𝑓 + , 𝐹) Fn (ℤ𝑁))
97, 8sylibr 223 . . . . . . . . . . . . . . . . 17 (𝜑 → seq𝑁( ∘𝑓 + , 𝐹) Fn 𝑍)
10 mtest.s . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑆𝑉)
11 elex 3185 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆𝑉𝑆 ∈ V)
1210, 11syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ∈ V)
1312adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → 𝑆 ∈ V)
14 simpr 476 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝑍) → 𝑖𝑍)
1514, 3syl6eleq 2698 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → 𝑖 ∈ (ℤ𝑁))
16 mtest.f . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
1716adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖𝑍) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
18 elfzuz 12209 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (𝑁...𝑖) → 𝑘 ∈ (ℤ𝑁))
1918, 3syl6eleqr 2699 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (𝑁...𝑖) → 𝑘𝑍)
20 ffvelrn 6265 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹:𝑍⟶(ℂ ↑𝑚 𝑆) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ (ℂ ↑𝑚 𝑆))
2117, 19, 20syl2an 493 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘) ∈ (ℂ ↑𝑚 𝑆))
22 elmapi 7765 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑘) ∈ (ℂ ↑𝑚 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘):𝑆⟶ℂ)
2423feqmptd 6159 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘) = (𝑧𝑆 ↦ ((𝐹𝑘)‘𝑧)))
2519adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → 𝑘𝑍)
26 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
2726fveq1d 6105 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑘 → ((𝐹𝑛)‘𝑧) = ((𝐹𝑘)‘𝑧))
28 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))
29 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑘)‘𝑧) ∈ V
3027, 28, 29fvmpt 6191 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘𝑍 → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
3125, 30syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
3231mpteq2dv 4673 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑧𝑆 ↦ ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘)) = (𝑧𝑆 ↦ ((𝐹𝑘)‘𝑧)))
3324, 32eqtr4d 2647 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘) = (𝑧𝑆 ↦ ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘)))
3413, 15, 33seqof 12720 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑍) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
351adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧𝑆) → 𝑁 ∈ ℤ)
3616ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (ℂ ↑𝑚 𝑆))
37 elmapi 7765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝑛) ∈ (ℂ ↑𝑚 𝑆) → (𝐹𝑛):𝑆⟶ℂ)
3836, 37syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑛𝑍) → (𝐹𝑛):𝑆⟶ℂ)
3938ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑛𝑍) ∧ 𝑧𝑆) → ((𝐹𝑛)‘𝑧) ∈ ℂ)
4039an32s 842 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝑆) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑧) ∈ ℂ)
4140, 28fmptd 6292 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧𝑆) → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)):𝑍⟶ℂ)
4241ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ 𝑖𝑍) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑖) ∈ ℂ)
433, 35, 42serf 12691 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑆) → seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))):𝑍⟶ℂ)
4443ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ 𝑖𝑍) → (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) ∈ ℂ)
4544an32s 842 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖𝑍) ∧ 𝑧𝑆) → (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) ∈ ℂ)
46 eqid 2610 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
4745, 46fmptd 6292 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)):𝑆⟶ℂ)
48 cnex 9896 . . . . . . . . . . . . . . . . . . . . 21 ℂ ∈ V
49 elmapg 7757 . . . . . . . . . . . . . . . . . . . . 21 ((ℂ ∈ V ∧ 𝑆 ∈ V) → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) ∈ (ℂ ↑𝑚 𝑆) ↔ (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)):𝑆⟶ℂ))
5048, 13, 49sylancr 694 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) ∈ (ℂ ↑𝑚 𝑆) ↔ (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)):𝑆⟶ℂ))
5147, 50mpbird 246 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑍) → (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) ∈ (ℂ ↑𝑚 𝑆))
5234, 51eqeltrd 2688 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝑍) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) ∈ (ℂ ↑𝑚 𝑆))
5352ralrimiva 2949 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑖𝑍 (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) ∈ (ℂ ↑𝑚 𝑆))
54 ffnfv 6295 . . . . . . . . . . . . . . . . 17 (seq𝑁( ∘𝑓 + , 𝐹):𝑍⟶(ℂ ↑𝑚 𝑆) ↔ (seq𝑁( ∘𝑓 + , 𝐹) Fn 𝑍 ∧ ∀𝑖𝑍 (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) ∈ (ℂ ↑𝑚 𝑆)))
559, 53, 54sylanbrc 695 . . . . . . . . . . . . . . . 16 (𝜑 → seq𝑁( ∘𝑓 + , 𝐹):𝑍⟶(ℂ ↑𝑚 𝑆))
5655ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → seq𝑁( ∘𝑓 + , 𝐹):𝑍⟶(ℂ ↑𝑚 𝑆))
573uztrn2 11581 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑖 ∈ (ℤ𝑗)) → 𝑖𝑍)
5857adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑖𝑍)
5956, 58ffvelrnd 6268 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) ∈ (ℂ ↑𝑚 𝑆))
60 elmapi 7765 . . . . . . . . . . . . . 14 ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) ∈ (ℂ ↑𝑚 𝑆) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖):𝑆⟶ℂ)
6159, 60syl 17 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖):𝑆⟶ℂ)
6261ffvelrnda 6267 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) ∈ ℂ)
63 simprl 790 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗𝑍)
6456, 63ffvelrnd 6268 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑗) ∈ (ℂ ↑𝑚 𝑆))
65 elmapi 7765 . . . . . . . . . . . . . 14 ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗) ∈ (ℂ ↑𝑚 𝑆) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑗):𝑆⟶ℂ)
6664, 65syl 17 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑗):𝑆⟶ℂ)
6766ffvelrnda 6267 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧) ∈ ℂ)
6862, 67subcld 10271 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧)) ∈ ℂ)
6968abscld 14023 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) ∈ ℝ)
70 fzfid 12634 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((𝑗 + 1)...𝑖) ∈ Fin)
71 ssun2 3739 . . . . . . . . . . . . . . . 16 ((𝑗 + 1)...𝑖) ⊆ ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖))
7263, 3syl6eleq 2698 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗 ∈ (ℤ𝑁))
73 simprr 792 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑖 ∈ (ℤ𝑗))
74 elfzuzb 12207 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (𝑁...𝑖) ↔ (𝑗 ∈ (ℤ𝑁) ∧ 𝑖 ∈ (ℤ𝑗)))
7572, 73, 74sylanbrc 695 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗 ∈ (𝑁...𝑖))
76 fzsplit 12238 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (𝑁...𝑖) → (𝑁...𝑖) = ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖)))
7775, 76syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (𝑁...𝑖) = ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖)))
7871, 77syl5sseqr 3617 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((𝑗 + 1)...𝑖) ⊆ (𝑁...𝑖))
7978sselda 3568 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 𝑘 ∈ (𝑁...𝑖))
8079adantlr 747 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 𝑘 ∈ (𝑁...𝑖))
8116ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
8281, 19, 20syl2an 493 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘) ∈ (ℂ ↑𝑚 𝑆))
8382, 22syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘):𝑆⟶ℂ)
8483ffvelrnda 6267 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
8584an32s 842 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑖)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
8680, 85syldan 486 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
8786abscld 14023 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (abs‘((𝐹𝑘)‘𝑧)) ∈ ℝ)
8870, 87fsumrecl 14312 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)) ∈ ℝ)
89 mtest.c . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℝ)
903, 1, 89serfre 12692 . . . . . . . . . . . . . . . 16 (𝜑 → seq𝑁( + , 𝑀):𝑍⟶ℝ)
9190ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → seq𝑁( + , 𝑀):𝑍⟶ℝ)
9291, 58ffvelrnd 6268 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( + , 𝑀)‘𝑖) ∈ ℝ)
9391, 63ffvelrnd 6268 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( + , 𝑀)‘𝑗) ∈ ℝ)
9492, 93resubcld 10337 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)) ∈ ℝ)
9594recnd 9947 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)) ∈ ℂ)
9695abscld 14023 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∈ ℝ)
9796adantr 480 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∈ ℝ)
9857, 34sylan2 490 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
9998adantlr 747 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
10099fveq1d 6105 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) = ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))‘𝑧))
101 fvex 6113 . . . . . . . . . . . . . . . 16 (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) ∈ V
10246fvmpt2 6200 . . . . . . . . . . . . . . . 16 ((𝑧𝑆 ∧ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) ∈ V) → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
103101, 102mpan2 703 . . . . . . . . . . . . . . 15 (𝑧𝑆 → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
104100, 103sylan9eq 2664 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
10534ralrimiva 2949 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑖𝑍 (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
106105ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ∀𝑖𝑍 (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
107 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) = (seq𝑁( ∘𝑓 + , 𝐹)‘𝑗))
108 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
109108mpteq2dv 4673 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)))
110107, 109eqeq12d 2625 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) ↔ (seq𝑁( ∘𝑓 + , 𝐹)‘𝑗) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))))
111110rspccv 3279 . . . . . . . . . . . . . . . . 17 (∀𝑖𝑍 (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) → (𝑗𝑍 → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑗) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))))
112106, 63, 111sylc 63 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑗) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)))
113112fveq1d 6105 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧) = ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))‘𝑧))
114 fvex 6113 . . . . . . . . . . . . . . . 16 (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗) ∈ V
115 eqid 2610 . . . . . . . . . . . . . . . . 17 (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
116115fvmpt2 6200 . . . . . . . . . . . . . . . 16 ((𝑧𝑆 ∧ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗) ∈ V) → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
117114, 116mpan2 703 . . . . . . . . . . . . . . 15 (𝑧𝑆 → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
118113, 117sylan9eq 2664 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
119104, 118oveq12d 6567 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧)) = ((seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) − (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)))
12019adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑖)) → 𝑘𝑍)
121120, 30syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑖)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
12258adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑖𝑍)
123122, 3syl6eleq 2698 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑖 ∈ (ℤ𝑁))
124121, 123, 85fsumser 14308 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
125 elfzuz 12209 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (𝑁...𝑗) → 𝑘 ∈ (ℤ𝑁))
126125, 3syl6eleqr 2699 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑁...𝑗) → 𝑘𝑍)
127126adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑗)) → 𝑘𝑍)
128127, 30syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑗)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
12963adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑗𝑍)
130129, 3syl6eleq 2698 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑗 ∈ (ℤ𝑁))
13181, 126, 20syl2an 493 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹𝑘) ∈ (ℂ ↑𝑚 𝑆))
132131, 22syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹𝑘):𝑆⟶ℂ)
133132ffvelrnda 6267 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
134133an32s 842 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑗)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
135128, 130, 134fsumser 14308 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
136124, 135oveq12d 6567 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) − Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧)) = ((seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) − (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)))
137 eluzelre 11574 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (ℤ𝑁) → 𝑗 ∈ ℝ)
13872, 137syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗 ∈ ℝ)
139138ltp1d 10833 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗 < (𝑗 + 1))
140 fzdisj 12239 . . . . . . . . . . . . . . . . . 18 (𝑗 < (𝑗 + 1) → ((𝑁...𝑗) ∩ ((𝑗 + 1)...𝑖)) = ∅)
141139, 140syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((𝑁...𝑗) ∩ ((𝑗 + 1)...𝑖)) = ∅)
142141adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((𝑁...𝑗) ∩ ((𝑗 + 1)...𝑖)) = ∅)
14377adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (𝑁...𝑖) = ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖)))
144 fzfid 12634 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (𝑁...𝑖) ∈ Fin)
145142, 143, 144, 85fsumsplit 14318 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) = (Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧) + Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧)))
146145eqcomd 2616 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧) + Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧)) = Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧))
147144, 85fsumcl 14311 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) ∈ ℂ)
148 fzfid 12634 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (𝑁...𝑗) ∈ Fin)
149148, 134fsumcl 14311 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧) ∈ ℂ)
15070, 86fsumcl 14311 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧) ∈ ℂ)
151147, 149, 150subaddd 10289 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) − Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧) ↔ (Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧) + Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧)) = Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧)))
152146, 151mpbird 246 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) − Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧))
153119, 136, 1523eqtr2d 2650 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧))
154153fveq2d 6107 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) = (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧)))
15570, 86fsumabs 14374 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧)) ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)))
156154, 155eqbrtrd 4605 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)))
157 simpll 786 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝜑)
158157, 19, 89syl2an 493 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑀𝑘) ∈ ℝ)
15979, 158syldan 486 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (𝑀𝑘) ∈ ℝ)
160159adantlr 747 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (𝑀𝑘) ∈ ℝ)
16180, 19syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 𝑘𝑍)
162 mtest.l . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
163162adantlr 747 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
164163adantlr 747 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
165164anass1rs 845 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘𝑍) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
166161, 165syldan 486 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
16770, 87, 160, 166fsumle 14372 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)) ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
168 eqidd 2611 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑀𝑘) = (𝑀𝑘))
16958, 3syl6eleq 2698 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑖 ∈ (ℤ𝑁))
170158recnd 9947 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑀𝑘) ∈ ℂ)
171168, 169, 170fsumser 14308 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) = (seq𝑁( + , 𝑀)‘𝑖))
172 eqidd 2611 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝑀𝑘) = (𝑀𝑘))
173157, 126, 89syl2an 493 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝑀𝑘) ∈ ℝ)
174173recnd 9947 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝑀𝑘) ∈ ℂ)
175172, 72, 174fsumser 14308 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘) = (seq𝑁( + , 𝑀)‘𝑗))
176171, 175oveq12d 6567 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) − Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘)) = ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)))
177 fzfid 12634 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (𝑁...𝑖) ∈ Fin)
178141, 77, 177, 170fsumsplit 14318 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) = (Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘) + Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)))
179178eqcomd 2616 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘) + Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)) = Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘))
180177, 170fsumcl 14311 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) ∈ ℂ)
181 fzfid 12634 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (𝑁...𝑗) ∈ Fin)
182181, 174fsumcl 14311 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘) ∈ ℂ)
183 fzfid 12634 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((𝑗 + 1)...𝑖) ∈ Fin)
18479, 170syldan 486 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (𝑀𝑘) ∈ ℂ)
185183, 184fsumcl 14311 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘) ∈ ℂ)
186180, 182, 185subaddd 10289 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) − Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘) ↔ (Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘) + Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)) = Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘)))
187179, 186mpbird 246 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) − Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
188176, 187eqtr3d 2646 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
189188fveq2d 6107 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) = (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)))
190189adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) = (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)))
191188, 94eqeltrrd 2689 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘) ∈ ℝ)
192191adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘) ∈ ℝ)
193 0red 9920 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 0 ∈ ℝ)
19486absge0d 14031 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 0 ≤ (abs‘((𝐹𝑘)‘𝑧)))
195193, 87, 160, 194, 166letrd 10073 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 0 ≤ (𝑀𝑘))
19670, 160, 195fsumge0 14368 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 0 ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
197192, 196absidd 14009 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
198190, 197eqtrd 2644 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
199167, 198breqtrrd 4611 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))))
20069, 88, 97, 156, 199letrd 10073 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))))
201 simpllr 795 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑟 ∈ ℝ+)
202201rpred 11748 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑟 ∈ ℝ)
203 lelttr 10007 . . . . . . . . . 10 (((abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) ∈ ℝ ∧ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∈ ℝ ∧ 𝑟 ∈ ℝ) → (((abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∧ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟) → (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
20469, 97, 202, 203syl3anc 1318 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (((abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∧ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟) → (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
205200, 204mpand 707 . . . . . . . 8 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
206205ralrimdva 2952 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑧𝑆 (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
207206anassrs 678 . . . . . 6 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑧𝑆 (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
208207ralimdva 2945 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
209208reximdva 3000 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑗𝑍𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∃𝑗𝑍𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
210209ralimdva 2945 . . 3 (𝜑 → (∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
2115, 210mpd 15 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) < 𝑟)
2123, 1, 10, 55ulmcau 23953 . 2 (𝜑 → (seq𝑁( ∘𝑓 + , 𝐹) ∈ dom (⇝𝑢𝑆) ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
213211, 212mpbird 246 1 (𝜑 → seq𝑁( ∘𝑓 + , 𝐹) ∈ dom (⇝𝑢𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cun 3538  cin 3539  c0 3874   class class class wbr 4583  cmpt 4643  dom cdm 5038   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  𝑚 cmap 7744  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145  cz 11254  cuz 11563  +crp 11708  ...cfz 12197  seqcseq 12663  abscabs 13822  cli 14063  Σcsu 14264  𝑢culm 23934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ulm 23935
This theorem is referenced by:  pserulm  23980  lgamgulmlem6  24560  knoppcnlem6  31658
  Copyright terms: Public domain W3C validator