Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem6 Structured version   Visualization version   GIF version

Theorem knoppcnlem6 31658
Description: Lemma for knoppcn 31664. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem6.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem6.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem6.n (𝜑𝑁 ∈ ℕ)
knoppcnlem6.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem6.2 (𝜑 → (abs‘𝐶) < 1)
Assertion
Ref Expression
knoppcnlem6 (𝜑 → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ))
Distinct variable groups:   𝐶,𝑚,𝑛,𝑦   𝑚,𝐹,𝑧   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑚,𝑛,𝑦,𝑧   𝑥,𝑚,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑧)   𝑇(𝑥,𝑧,𝑚)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑧,𝑚)

Proof of Theorem knoppcnlem6
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11598 . 2 0 = (ℤ‘0)
2 0zd 11266 . 2 (𝜑 → 0 ∈ ℤ)
3 reex 9906 . . 3 ℝ ∈ V
43a1i 11 . 2 (𝜑 → ℝ ∈ V)
5 knoppcnlem6.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
6 knoppcnlem6.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
7 knoppcnlem6.n . . 3 (𝜑𝑁 ∈ ℕ)
8 knoppcnlem6.1 . . 3 (𝜑𝐶 ∈ ℝ)
95, 6, 7, 8knoppcnlem5 31657 . 2 (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))):ℕ0⟶(ℂ ↑𝑚 ℝ))
10 nn0ex 11175 . . . 4 0 ∈ V
1110mptex 6390 . . 3 (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) ∈ V
1211a1i 11 . 2 (𝜑 → (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) ∈ V)
13 eqid 2610 . . . . 5 (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) = (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))
1413a1i 11 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) = (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)))
15 simpr 476 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑚 = 𝑘) → 𝑚 = 𝑘)
1615oveq2d 6565 . . . 4 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑚 = 𝑘) → ((abs‘𝐶)↑𝑚) = ((abs‘𝐶)↑𝑘))
17 simpr 476 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
18 ovex 6577 . . . . 5 ((abs‘𝐶)↑𝑘) ∈ V
1918a1i 11 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((abs‘𝐶)↑𝑘) ∈ V)
2014, 16, 17, 19fvmptd 6197 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑘) = ((abs‘𝐶)↑𝑘))
218recnd 9947 . . . . . 6 (𝜑𝐶 ∈ ℂ)
2221abscld 14023 . . . . 5 (𝜑 → (abs‘𝐶) ∈ ℝ)
2322adantr 480 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘𝐶) ∈ ℝ)
2423, 17reexpcld 12887 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((abs‘𝐶)↑𝑘) ∈ ℝ)
2520, 24eqeltrd 2688 . 2 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑘) ∈ ℝ)
26 eqid 2610 . . . . . . 7 (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))
2726a1i 11 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))
28 simpr 476 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑚 = 𝑘) → 𝑚 = 𝑘)
2928fveq2d 6107 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑚 = 𝑘) → ((𝐹𝑧)‘𝑚) = ((𝐹𝑧)‘𝑘))
3029mpteq2dv 4673 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) = (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑘)))
3117adantrr 749 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → 𝑘 ∈ ℕ0)
323mptex 6390 . . . . . . 7 (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑘)) ∈ V
3332a1i 11 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑘)) ∈ V)
3427, 30, 31, 33fvmptd 6197 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → ((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘) = (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑘)))
35 simpr 476 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑧 = 𝑤) → 𝑧 = 𝑤)
3635fveq2d 6107 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑧 = 𝑤) → (𝐹𝑧) = (𝐹𝑤))
3736fveq1d 6105 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑧 = 𝑤) → ((𝐹𝑧)‘𝑘) = ((𝐹𝑤)‘𝑘))
38 simprr 792 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → 𝑤 ∈ ℝ)
39 fvex 6113 . . . . . 6 ((𝐹𝑤)‘𝑘) ∈ V
4039a1i 11 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → ((𝐹𝑤)‘𝑘) ∈ V)
4134, 37, 38, 40fvmptd 6197 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘)‘𝑤) = ((𝐹𝑤)‘𝑘))
4241fveq2d 6107 . . 3 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘)‘𝑤)) = (abs‘((𝐹𝑤)‘𝑘)))
437adantr 480 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → 𝑁 ∈ ℕ)
448adantr 480 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → 𝐶 ∈ ℝ)
455, 6, 43, 44, 38, 31knoppcnlem4 31656 . . 3 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (abs‘((𝐹𝑤)‘𝑘)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑘))
4642, 45eqbrtrd 4605 . 2 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘)‘𝑤)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑘))
4722recnd 9947 . . . 4 (𝜑 → (abs‘𝐶) ∈ ℂ)
48 absidm 13911 . . . . . 6 (𝐶 ∈ ℂ → (abs‘(abs‘𝐶)) = (abs‘𝐶))
4921, 48syl 17 . . . . 5 (𝜑 → (abs‘(abs‘𝐶)) = (abs‘𝐶))
50 knoppcnlem6.2 . . . . 5 (𝜑 → (abs‘𝐶) < 1)
5149, 50eqbrtrd 4605 . . . 4 (𝜑 → (abs‘(abs‘𝐶)) < 1)
5247, 51, 20geolim 14440 . . 3 (𝜑 → seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ⇝ (1 / (1 − (abs‘𝐶))))
53 seqex 12665 . . . 4 seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ∈ V
54 ovex 6577 . . . 4 (1 / (1 − (abs‘𝐶))) ∈ V
5553, 54breldm 5251 . . 3 (seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ⇝ (1 / (1 − (abs‘𝐶))) → seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ∈ dom ⇝ )
5652, 55syl 17 . 2 (𝜑 → seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ∈ dom ⇝ )
571, 2, 4, 9, 12, 25, 46, 56mtest 23962 1 (𝜑 → seq0( ∘𝑓 + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173   class class class wbr 4583  cmpt 4643  dom cdm 5038  cfv 5804  (class class class)co 6549  𝑓 cof 6793  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cfl 12453  seqcseq 12663  cexp 12722  abscabs 13822  cli 14063  𝑢culm 23934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ulm 23935
This theorem is referenced by:  knoppcnlem9  31661
  Copyright terms: Public domain W3C validator