MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mtest Structured version   Unicode version

Theorem mtest 23351
Description: The Weierstrass M-test. If  F is a sequence of functions which are uniformly bounded by the convergent sequence  M ( k ), then the series generated by the sequence  F converges uniformly. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
mtest.z  |-  Z  =  ( ZZ>= `  N )
mtest.n  |-  ( ph  ->  N  e.  ZZ )
mtest.s  |-  ( ph  ->  S  e.  V )
mtest.f  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
mtest.m  |-  ( ph  ->  M  e.  W )
mtest.c  |-  ( (
ph  /\  k  e.  Z )  ->  ( M `  k )  e.  RR )
mtest.l  |-  ( (
ph  /\  ( k  e.  Z  /\  z  e.  S ) )  -> 
( abs `  (
( F `  k
) `  z )
)  <_  ( M `  k ) )
mtest.d  |-  ( ph  ->  seq N (  +  ,  M )  e. 
dom 
~~>  )
Assertion
Ref Expression
mtest  |-  ( ph  ->  seq N (  oF  +  ,  F
)  e.  dom  ( ~~> u `  S )
)
Distinct variable groups:    z, k, F    k, M, z    k, N, z    ph, k, z   
k, Z, z    S, k, z
Allowed substitution hints:    V( z, k)    W( z, k)

Proof of Theorem mtest
Dummy variables  i 
j  n  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mtest.n . . . 4  |-  ( ph  ->  N  e.  ZZ )
2 mtest.d . . . 4  |-  ( ph  ->  seq N (  +  ,  M )  e. 
dom 
~~>  )
3 mtest.z . . . . 5  |-  Z  =  ( ZZ>= `  N )
43climcau 13727 . . . 4  |-  ( ( N  e.  ZZ  /\  seq N (  +  ,  M )  e.  dom  ~~>  )  ->  A. r  e.  RR+  E. j  e.  Z  A. i  e.  ( ZZ>= `  j ) ( abs `  ( (  seq N
(  +  ,  M
) `  i )  -  (  seq N (  +  ,  M ) `
 j ) ) )  <  r )
51, 2, 4syl2anc 666 . . 3  |-  ( ph  ->  A. r  e.  RR+  E. j  e.  Z  A. i  e.  ( ZZ>= `  j ) ( abs `  ( (  seq N
(  +  ,  M
) `  i )  -  (  seq N (  +  ,  M ) `
 j ) ) )  <  r )
6 seqfn 12226 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ZZ  ->  seq N (  oF  +  ,  F )  Fn  ( ZZ>= `  N
) )
71, 6syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  seq N (  oF  +  ,  F
)  Fn  ( ZZ>= `  N ) )
83fneq2i 5687 . . . . . . . . . . . . . . . . . 18  |-  (  seq N (  oF  +  ,  F )  Fn  Z  <->  seq N (  oF  +  ,  F )  Fn  ( ZZ>=
`  N ) )
97, 8sylibr 216 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  seq N (  oF  +  ,  F
)  Fn  Z )
10 mtest.s . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  S  e.  V )
11 elex 3091 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( S  e.  V  ->  S  e.  _V )
1210, 11syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  S  e.  _V )
1312adantr 467 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  Z )  ->  S  e.  _V )
14 simpr 463 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  Z )  ->  i  e.  Z )
1514, 3syl6eleq 2521 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  Z )  ->  i  e.  ( ZZ>= `  N )
)
16 mtest.f . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
1716adantr 467 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  i  e.  Z )  ->  F : Z --> ( CC  ^m  S ) )
18 elfzuz 11798 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( k  e.  ( N ... i )  ->  k  e.  ( ZZ>= `  N )
)
1918, 3syl6eleqr 2522 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( k  e.  ( N ... i )  ->  k  e.  Z )
20 ffvelrn 6033 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F : Z --> ( CC 
^m  S )  /\  k  e.  Z )  ->  ( F `  k
)  e.  ( CC 
^m  S ) )
2117, 19, 20syl2an 480 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  i  e.  Z )  /\  k  e.  ( N ... i
) )  ->  ( F `  k )  e.  ( CC  ^m  S
) )
22 elmapi 7499 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( F `  k )  e.  ( CC  ^m  S )  ->  ( F `  k ) : S --> CC )
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  i  e.  Z )  /\  k  e.  ( N ... i
) )  ->  ( F `  k ) : S --> CC )
2423feqmptd 5932 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  Z )  /\  k  e.  ( N ... i
) )  ->  ( F `  k )  =  ( z  e.  S  |->  ( ( F `
 k ) `  z ) ) )
2519adantl 468 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  i  e.  Z )  /\  k  e.  ( N ... i
) )  ->  k  e.  Z )
26 fveq2 5879 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
2726fveq1d 5881 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  k  ->  (
( F `  n
) `  z )  =  ( ( F `
 k ) `  z ) )
28 eqid 2423 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) )  =  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) )
29 fvex 5889 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F `  k ) `
 z )  e. 
_V
3027, 28, 29fvmpt 5962 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  Z  ->  (
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) `  k
)  =  ( ( F `  k ) `
 z ) )
3125, 30syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  i  e.  Z )  /\  k  e.  ( N ... i
) )  ->  (
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) `  k
)  =  ( ( F `  k ) `
 z ) )
3231mpteq2dv 4509 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  Z )  /\  k  e.  ( N ... i
) )  ->  (
z  e.  S  |->  ( ( n  e.  Z  |->  ( ( F `  n ) `  z
) ) `  k
) )  =  ( z  e.  S  |->  ( ( F `  k
) `  z )
) )
3324, 32eqtr4d 2467 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  Z )  /\  k  e.  ( N ... i
) )  ->  ( F `  k )  =  ( z  e.  S  |->  ( ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) `
 k ) ) )
3413, 15, 33seqof 12271 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  i  e.  Z )  ->  (  seq N (  oF  +  ,  F ) `
 i )  =  ( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  i ) ) )
351adantr 467 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  z  e.  S )  ->  N  e.  ZZ )
3616ffvelrnda 6035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  e.  ( CC  ^m  S
) )
37 elmapi 7499 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( F `  n )  e.  ( CC  ^m  S )  ->  ( F `  n ) : S --> CC )
3836, 37syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n ) : S --> CC )
3938ffvelrnda 6035 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  n  e.  Z )  /\  z  e.  S )  ->  (
( F `  n
) `  z )  e.  CC )
4039an32s 812 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  z  e.  S )  /\  n  e.  Z )  ->  (
( F `  n
) `  z )  e.  CC )
4140, 28fmptd 6059 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  z  e.  S )  ->  (
n  e.  Z  |->  ( ( F `  n
) `  z )
) : Z --> CC )
4241ffvelrnda 6035 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  z  e.  S )  /\  i  e.  Z )  ->  (
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) `  i
)  e.  CC )
433, 35, 42serf 12242 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  z  e.  S )  ->  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) : Z --> CC )
4443ffvelrnda 6035 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  z  e.  S )  /\  i  e.  Z )  ->  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  i )  e.  CC )
4544an32s 812 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  Z )  /\  z  e.  S )  ->  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  i )  e.  CC )
46 eqid 2423 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  S  |->  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  i ) )  =  ( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  i ) )
4745, 46fmptd 6059 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  Z )  ->  (
z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) ) ) `
 i ) ) : S --> CC )
48 cnex 9622 . . . . . . . . . . . . . . . . . . . . 21  |-  CC  e.  _V
49 elmapg 7491 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( CC  e.  _V  /\  S  e.  _V )  ->  ( ( z  e.  S  |->  (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  i
) )  e.  ( CC  ^m  S )  <-> 
( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  i ) ) : S --> CC ) )
5048, 13, 49sylancr 668 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  Z )  ->  (
( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  i ) )  e.  ( CC 
^m  S )  <->  ( z  e.  S  |->  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  i ) ) : S --> CC ) )
5147, 50mpbird 236 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  i  e.  Z )  ->  (
z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) ) ) `
 i ) )  e.  ( CC  ^m  S ) )
5234, 51eqeltrd 2511 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  Z )  ->  (  seq N (  oF  +  ,  F ) `
 i )  e.  ( CC  ^m  S
) )
5352ralrimiva 2840 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. i  e.  Z  (  seq N (  oF  +  ,  F
) `  i )  e.  ( CC  ^m  S
) )
54 ffnfv 6062 . . . . . . . . . . . . . . . . 17  |-  (  seq N (  oF  +  ,  F ) : Z --> ( CC 
^m  S )  <->  (  seq N (  oF  +  ,  F )  Fn  Z  /\  A. i  e.  Z  (  seq N (  oF  +  ,  F ) `
 i )  e.  ( CC  ^m  S
) ) )
559, 53, 54sylanbrc 669 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  seq N (  oF  +  ,  F
) : Z --> ( CC 
^m  S ) )
5655ad2antrr 731 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  seq N (  oF  +  ,  F
) : Z --> ( CC 
^m  S ) )
573uztrn2 11178 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  Z  /\  i  e.  ( ZZ>= `  j ) )  -> 
i  e.  Z )
5857adantl 468 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  i  e.  Z
)
5956, 58ffvelrnd 6036 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  (  seq N
(  oF  +  ,  F ) `  i
)  e.  ( CC 
^m  S ) )
60 elmapi 7499 . . . . . . . . . . . . . 14  |-  ( (  seq N (  oF  +  ,  F
) `  i )  e.  ( CC  ^m  S
)  ->  (  seq N (  oF  +  ,  F ) `
 i ) : S --> CC )
6159, 60syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  (  seq N
(  oF  +  ,  F ) `  i
) : S --> CC )
6261ffvelrnda 6035 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
(  seq N (  oF  +  ,  F
) `  i ) `  z )  e.  CC )
63 simprl 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  j  e.  Z
)
6456, 63ffvelrnd 6036 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  (  seq N
(  oF  +  ,  F ) `  j
)  e.  ( CC 
^m  S ) )
65 elmapi 7499 . . . . . . . . . . . . . 14  |-  ( (  seq N (  oF  +  ,  F
) `  j )  e.  ( CC  ^m  S
)  ->  (  seq N (  oF  +  ,  F ) `
 j ) : S --> CC )
6664, 65syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  (  seq N
(  oF  +  ,  F ) `  j
) : S --> CC )
6766ffvelrnda 6035 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
(  seq N (  oF  +  ,  F
) `  j ) `  z )  e.  CC )
6862, 67subcld 9988 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
( (  seq N
(  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) )  e.  CC )
6968abscld 13491 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( abs `  ( ( (  seq N (  oF  +  ,  F
) `  i ) `  z )  -  (
(  seq N (  oF  +  ,  F
) `  j ) `  z ) ) )  e.  RR )
70 fzfid 12187 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
( j  +  1 ) ... i )  e.  Fin )
71 ssun2 3631 . . . . . . . . . . . . . . . 16  |-  ( ( j  +  1 ) ... i )  C_  ( ( N ... j )  u.  (
( j  +  1 ) ... i ) )
7263, 3syl6eleq 2521 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  j  e.  (
ZZ>= `  N ) )
73 simprr 765 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  i  e.  (
ZZ>= `  j ) )
74 elfzuzb 11796 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  ( N ... i )  <->  ( j  e.  ( ZZ>= `  N )  /\  i  e.  ( ZZ>=
`  j ) ) )
7572, 73, 74sylanbrc 669 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  j  e.  ( N ... i ) )
76 fzsplit 11827 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( N ... i )  ->  ( N ... i )  =  ( ( N ... j )  u.  (
( j  +  1 ) ... i ) ) )
7775, 76syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( N ... i )  =  ( ( N ... j
)  u.  ( ( j  +  1 ) ... i ) ) )
7871, 77syl5sseqr 3514 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( ( j  +  1 ) ... i )  C_  ( N ... i ) )
7978sselda 3465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  k  e.  ( N ... i
) )
8079adantlr 720 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  k  e.  ( N ... i
) )
8116ad2antrr 731 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  F : Z --> ( CC  ^m  S ) )
8281, 19, 20syl2an 480 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... i
) )  ->  ( F `  k )  e.  ( CC  ^m  S
) )
8382, 22syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... i
) )  ->  ( F `  k ) : S --> CC )
8483ffvelrnda 6035 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... i
) )  /\  z  e.  S )  ->  (
( F `  k
) `  z )  e.  CC )
8584an32s 812 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( N ... i
) )  ->  (
( F `  k
) `  z )  e.  CC )
8680, 85syldan 473 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  (
( F `  k
) `  z )  e.  CC )
8786abscld 13491 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  ( abs `  ( ( F `
 k ) `  z ) )  e.  RR )
8870, 87fsumrecl 13793 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  sum_ k  e.  ( ( j  +  1 ) ... i
) ( abs `  (
( F `  k
) `  z )
)  e.  RR )
89 mtest.c . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  Z )  ->  ( M `  k )  e.  RR )
903, 1, 89serfre 12243 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  seq N (  +  ,  M ) : Z --> RR )
9190ad2antrr 731 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  seq N (  +  ,  M ) : Z --> RR )
9291, 58ffvelrnd 6036 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  (  seq N
(  +  ,  M
) `  i )  e.  RR )
9391, 63ffvelrnd 6036 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  (  seq N
(  +  ,  M
) `  j )  e.  RR )
9492, 93resubcld 10049 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( (  seq N (  +  ,  M ) `  i
)  -  (  seq N (  +  ,  M ) `  j
) )  e.  RR )
9594recnd 9671 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( (  seq N (  +  ,  M ) `  i
)  -  (  seq N (  +  ,  M ) `  j
) )  e.  CC )
9695abscld 13491 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( abs `  (
(  seq N (  +  ,  M ) `  i )  -  (  seq N (  +  ,  M ) `  j
) ) )  e.  RR )
9796adantr 467 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( abs `  ( (  seq N (  +  ,  M ) `  i
)  -  (  seq N (  +  ,  M ) `  j
) ) )  e.  RR )
9857, 34sylan2 477 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  Z  /\  i  e.  ( ZZ>= `  j )
) )  ->  (  seq N (  oF  +  ,  F ) `
 i )  =  ( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  i ) ) )
9998adantlr 720 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  (  seq N
(  oF  +  ,  F ) `  i
)  =  ( z  e.  S  |->  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  i ) ) )
10099fveq1d 5881 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( (  seq N (  oF  +  ,  F ) `
 i ) `  z )  =  ( ( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  i ) ) `  z ) )
101 fvex 5889 . . . . . . . . . . . . . . . 16  |-  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  i )  e.  _V
10246fvmpt2 5971 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  S  /\  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) ) ) `
 i )  e. 
_V )  ->  (
( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  i ) ) `  z )  =  (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  i
) )
103101, 102mpan2 676 . . . . . . . . . . . . . . 15  |-  ( z  e.  S  ->  (
( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  i ) ) `  z )  =  (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  i
) )
104100, 103sylan9eq 2484 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
(  seq N (  oF  +  ,  F
) `  i ) `  z )  =  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) ) ) `
 i ) )
10534ralrimiva 2840 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A. i  e.  Z  (  seq N (  oF  +  ,  F
) `  i )  =  ( z  e.  S  |->  (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  i
) ) )
106105ad2antrr 731 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  A. i  e.  Z  (  seq N (  oF  +  ,  F
) `  i )  =  ( z  e.  S  |->  (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  i
) ) )
107 fveq2 5879 . . . . . . . . . . . . . . . . . . 19  |-  ( i  =  j  ->  (  seq N (  oF  +  ,  F ) `
 i )  =  (  seq N (  oF  +  ,  F ) `  j
) )
108 fveq2 5879 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  =  j  ->  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  i )  =  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) ) ) `
 j ) )
109108mpteq2dv 4509 . . . . . . . . . . . . . . . . . . 19  |-  ( i  =  j  ->  (
z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) ) ) `
 i ) )  =  ( z  e.  S  |->  (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  j
) ) )
110107, 109eqeq12d 2445 . . . . . . . . . . . . . . . . . 18  |-  ( i  =  j  ->  (
(  seq N (  oF  +  ,  F
) `  i )  =  ( z  e.  S  |->  (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  i
) )  <->  (  seq N (  oF  +  ,  F ) `
 j )  =  ( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  j ) ) ) )
111110rspccv 3180 . . . . . . . . . . . . . . . . 17  |-  ( A. i  e.  Z  (  seq N (  oF  +  ,  F ) `
 i )  =  ( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  i ) )  ->  ( j  e.  Z  ->  (  seq N (  oF  +  ,  F ) `
 j )  =  ( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  j ) ) ) )
112106, 63, 111sylc 63 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  (  seq N
(  oF  +  ,  F ) `  j
)  =  ( z  e.  S  |->  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  j ) ) )
113112fveq1d 5881 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z )  =  ( ( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  j ) ) `  z ) )
114 fvex 5889 . . . . . . . . . . . . . . . 16  |-  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  j )  e.  _V
115 eqid 2423 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  S  |->  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  j ) )  =  ( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  j ) )
116115fvmpt2 5971 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  S  /\  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) ) ) `
 j )  e. 
_V )  ->  (
( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  j ) ) `  z )  =  (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  j
) )
117114, 116mpan2 676 . . . . . . . . . . . . . . 15  |-  ( z  e.  S  ->  (
( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  j ) ) `  z )  =  (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  j
) )
118113, 117sylan9eq 2484 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
(  seq N (  oF  +  ,  F
) `  j ) `  z )  =  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) ) ) `
 j ) )
119104, 118oveq12d 6321 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
( (  seq N
(  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) )  =  ( (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  i
)  -  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  j ) ) )
12019adantl 468 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( N ... i
) )  ->  k  e.  Z )
121120, 30syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( N ... i
) )  ->  (
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) `  k
)  =  ( ( F `  k ) `
 z ) )
12258adantr 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  i  e.  Z )
123122, 3syl6eleq 2521 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  i  e.  ( ZZ>= `  N )
)
124121, 123, 85fsumser 13789 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  sum_ k  e.  ( N ... i
) ( ( F `
 k ) `  z )  =  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) ) ) `
 i ) )
125 elfzuz 11798 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( N ... j )  ->  k  e.  ( ZZ>= `  N )
)
126125, 3syl6eleqr 2522 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( N ... j )  ->  k  e.  Z )
127126adantl 468 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( N ... j
) )  ->  k  e.  Z )
128127, 30syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( N ... j
) )  ->  (
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) `  k
)  =  ( ( F `  k ) `
 z ) )
12963adantr 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  j  e.  Z )
130129, 3syl6eleq 2521 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  j  e.  ( ZZ>= `  N )
)
13181, 126, 20syl2an 480 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... j
) )  ->  ( F `  k )  e.  ( CC  ^m  S
) )
132131, 22syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... j
) )  ->  ( F `  k ) : S --> CC )
133132ffvelrnda 6035 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... j
) )  /\  z  e.  S )  ->  (
( F `  k
) `  z )  e.  CC )
134133an32s 812 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( N ... j
) )  ->  (
( F `  k
) `  z )  e.  CC )
135128, 130, 134fsumser 13789 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  sum_ k  e.  ( N ... j
) ( ( F `
 k ) `  z )  =  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) ) ) `
 j ) )
136124, 135oveq12d 6321 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( sum_ k  e.  ( N ... i ) ( ( F `  k
) `  z )  -  sum_ k  e.  ( N ... j ) ( ( F `  k ) `  z
) )  =  ( (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  i )  -  (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  j
) ) )
137 eluzelre 11171 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  ( ZZ>= `  N
)  ->  j  e.  RR )
13872, 137syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  j  e.  RR )
139138ltp1d 10539 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  j  <  (
j  +  1 ) )
140 fzdisj 11828 . . . . . . . . . . . . . . . . . 18  |-  ( j  <  ( j  +  1 )  ->  (
( N ... j
)  i^i  ( (
j  +  1 ) ... i ) )  =  (/) )
141139, 140syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( ( N ... j )  i^i  ( ( j  +  1 ) ... i
) )  =  (/) )
142141adantr 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
( N ... j
)  i^i  ( (
j  +  1 ) ... i ) )  =  (/) )
14377adantr 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( N ... i )  =  ( ( N ... j )  u.  (
( j  +  1 ) ... i ) ) )
144 fzfid 12187 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( N ... i )  e. 
Fin )
145142, 143, 144, 85fsumsplit 13799 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  sum_ k  e.  ( N ... i
) ( ( F `
 k ) `  z )  =  (
sum_ k  e.  ( N ... j ) ( ( F `  k ) `  z
)  +  sum_ k  e.  ( ( j  +  1 ) ... i
) ( ( F `
 k ) `  z ) ) )
146145eqcomd 2431 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( sum_ k  e.  ( N ... j ) ( ( F `  k
) `  z )  +  sum_ k  e.  ( ( j  +  1 ) ... i ) ( ( F `  k ) `  z
) )  =  sum_ k  e.  ( N ... i ) ( ( F `  k ) `
 z ) )
147144, 85fsumcl 13792 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  sum_ k  e.  ( N ... i
) ( ( F `
 k ) `  z )  e.  CC )
148 fzfid 12187 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( N ... j )  e. 
Fin )
149148, 134fsumcl 13792 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  sum_ k  e.  ( N ... j
) ( ( F `
 k ) `  z )  e.  CC )
15070, 86fsumcl 13792 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  sum_ k  e.  ( ( j  +  1 ) ... i
) ( ( F `
 k ) `  z )  e.  CC )
151147, 149, 150subaddd 10006 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
( sum_ k  e.  ( N ... i ) ( ( F `  k ) `  z
)  -  sum_ k  e.  ( N ... j
) ( ( F `
 k ) `  z ) )  = 
sum_ k  e.  ( ( j  +  1 ) ... i ) ( ( F `  k ) `  z
)  <->  ( sum_ k  e.  ( N ... j
) ( ( F `
 k ) `  z )  +  sum_ k  e.  ( (
j  +  1 ) ... i ) ( ( F `  k
) `  z )
)  =  sum_ k  e.  ( N ... i
) ( ( F `
 k ) `  z ) ) )
152146, 151mpbird 236 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( sum_ k  e.  ( N ... i ) ( ( F `  k
) `  z )  -  sum_ k  e.  ( N ... j ) ( ( F `  k ) `  z
) )  =  sum_ k  e.  ( (
j  +  1 ) ... i ) ( ( F `  k
) `  z )
)
153119, 136, 1523eqtr2d 2470 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
( (  seq N
(  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) )  = 
sum_ k  e.  ( ( j  +  1 ) ... i ) ( ( F `  k ) `  z
) )
154153fveq2d 5883 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( abs `  ( ( (  seq N (  oF  +  ,  F
) `  i ) `  z )  -  (
(  seq N (  oF  +  ,  F
) `  j ) `  z ) ) )  =  ( abs `  sum_ k  e.  ( (
j  +  1 ) ... i ) ( ( F `  k
) `  z )
) )
15570, 86fsumabs 13854 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( abs `  sum_ k  e.  ( ( j  +  1 ) ... i ) ( ( F `  k ) `  z
) )  <_  sum_ k  e.  ( ( j  +  1 ) ... i
) ( abs `  (
( F `  k
) `  z )
) )
156154, 155eqbrtrd 4442 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( abs `  ( ( (  seq N (  oF  +  ,  F
) `  i ) `  z )  -  (
(  seq N (  oF  +  ,  F
) `  j ) `  z ) ) )  <_  sum_ k  e.  ( ( j  +  1 ) ... i ) ( abs `  (
( F `  k
) `  z )
) )
157 simpll 759 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ph )
158157, 19, 89syl2an 480 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... i
) )  ->  ( M `  k )  e.  RR )
15979, 158syldan 473 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  ( M `  k )  e.  RR )
160159adantlr 720 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  ( M `  k )  e.  RR )
16180, 19syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  k  e.  Z )
162 mtest.l . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  e.  Z  /\  z  e.  S ) )  -> 
( abs `  (
( F `  k
) `  z )
)  <_  ( M `  k ) )
163162adantlr 720 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
k  e.  Z  /\  z  e.  S )
)  ->  ( abs `  ( ( F `  k ) `  z
) )  <_  ( M `  k )
)
164163adantlr 720 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  ( k  e.  Z  /\  z  e.  S ) )  -> 
( abs `  (
( F `  k
) `  z )
)  <_  ( M `  k ) )
165164anass1rs 815 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  Z )  ->  ( abs `  ( ( F `
 k ) `  z ) )  <_ 
( M `  k
) )
166161, 165syldan 473 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  ( abs `  ( ( F `
 k ) `  z ) )  <_ 
( M `  k
) )
16770, 87, 160, 166fsumle 13852 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  sum_ k  e.  ( ( j  +  1 ) ... i
) ( abs `  (
( F `  k
) `  z )
)  <_  sum_ k  e.  ( ( j  +  1 ) ... i
) ( M `  k ) )
168 eqidd 2424 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... i
) )  ->  ( M `  k )  =  ( M `  k ) )
16958, 3syl6eleq 2521 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  i  e.  (
ZZ>= `  N ) )
170158recnd 9671 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... i
) )  ->  ( M `  k )  e.  CC )
171168, 169, 170fsumser 13789 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  sum_ k  e.  ( N ... i ) ( M `  k
)  =  (  seq N (  +  ,  M ) `  i
) )
172 eqidd 2424 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... j
) )  ->  ( M `  k )  =  ( M `  k ) )
173157, 126, 89syl2an 480 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... j
) )  ->  ( M `  k )  e.  RR )
174173recnd 9671 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... j
) )  ->  ( M `  k )  e.  CC )
175172, 72, 174fsumser 13789 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  sum_ k  e.  ( N ... j ) ( M `  k
)  =  (  seq N (  +  ,  M ) `  j
) )
176171, 175oveq12d 6321 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( sum_ k  e.  ( N ... i
) ( M `  k )  -  sum_ k  e.  ( N ... j ) ( M `
 k ) )  =  ( (  seq N (  +  ,  M ) `  i
)  -  (  seq N (  +  ,  M ) `  j
) ) )
177 fzfid 12187 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( N ... i )  e.  Fin )
178141, 77, 177, 170fsumsplit 13799 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  sum_ k  e.  ( N ... i ) ( M `  k
)  =  ( sum_ k  e.  ( N ... j ) ( M `
 k )  + 
sum_ k  e.  ( ( j  +  1 ) ... i ) ( M `  k
) ) )
179178eqcomd 2431 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( sum_ k  e.  ( N ... j
) ( M `  k )  +  sum_ k  e.  ( (
j  +  1 ) ... i ) ( M `  k ) )  =  sum_ k  e.  ( N ... i
) ( M `  k ) )
180177, 170fsumcl 13792 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  sum_ k  e.  ( N ... i ) ( M `  k
)  e.  CC )
181 fzfid 12187 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( N ... j )  e.  Fin )
182181, 174fsumcl 13792 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  sum_ k  e.  ( N ... j ) ( M `  k
)  e.  CC )
183 fzfid 12187 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( ( j  +  1 ) ... i )  e.  Fin )
18479, 170syldan 473 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  ( M `  k )  e.  CC )
185183, 184fsumcl 13792 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  sum_ k  e.  ( ( j  +  1 ) ... i ) ( M `  k
)  e.  CC )
186180, 182, 185subaddd 10006 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( ( sum_ k  e.  ( N ... i ) ( M `
 k )  -  sum_ k  e.  ( N ... j ) ( M `  k ) )  =  sum_ k  e.  ( ( j  +  1 ) ... i
) ( M `  k )  <->  ( sum_ k  e.  ( N ... j ) ( M `
 k )  + 
sum_ k  e.  ( ( j  +  1 ) ... i ) ( M `  k
) )  =  sum_ k  e.  ( N ... i ) ( M `
 k ) ) )
187179, 186mpbird 236 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( sum_ k  e.  ( N ... i
) ( M `  k )  -  sum_ k  e.  ( N ... j ) ( M `
 k ) )  =  sum_ k  e.  ( ( j  +  1 ) ... i ) ( M `  k
) )
188176, 187eqtr3d 2466 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( (  seq N (  +  ,  M ) `  i
)  -  (  seq N (  +  ,  M ) `  j
) )  =  sum_ k  e.  ( (
j  +  1 ) ... i ) ( M `  k ) )
189188fveq2d 5883 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( abs `  (
(  seq N (  +  ,  M ) `  i )  -  (  seq N (  +  ,  M ) `  j
) ) )  =  ( abs `  sum_ k  e.  ( (
j  +  1 ) ... i ) ( M `  k ) ) )
190189adantr 467 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( abs `  ( (  seq N (  +  ,  M ) `  i
)  -  (  seq N (  +  ,  M ) `  j
) ) )  =  ( abs `  sum_ k  e.  ( (
j  +  1 ) ... i ) ( M `  k ) ) )
191188, 94eqeltrrd 2512 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  sum_ k  e.  ( ( j  +  1 ) ... i ) ( M `  k
)  e.  RR )
192191adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  sum_ k  e.  ( ( j  +  1 ) ... i
) ( M `  k )  e.  RR )
193 0red 9646 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  0  e.  RR )
19486absge0d 13499 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  0  <_  ( abs `  (
( F `  k
) `  z )
) )
195193, 87, 160, 194, 166letrd 9794 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  0  <_  ( M `  k
) )
19670, 160, 195fsumge0 13848 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  0  <_ 
sum_ k  e.  ( ( j  +  1 ) ... i ) ( M `  k
) )
197192, 196absidd 13478 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( abs `  sum_ k  e.  ( ( j  +  1 ) ... i ) ( M `  k
) )  =  sum_ k  e.  ( (
j  +  1 ) ... i ) ( M `  k ) )
198190, 197eqtrd 2464 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( abs `  ( (  seq N (  +  ,  M ) `  i
)  -  (  seq N (  +  ,  M ) `  j
) ) )  = 
sum_ k  e.  ( ( j  +  1 ) ... i ) ( M `  k
) )
199167, 198breqtrrd 4448 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  sum_ k  e.  ( ( j  +  1 ) ... i
) ( abs `  (
( F `  k
) `  z )
)  <_  ( abs `  ( (  seq N
(  +  ,  M
) `  i )  -  (  seq N (  +  ,  M ) `
 j ) ) ) )
20069, 88, 97, 156, 199letrd 9794 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( abs `  ( ( (  seq N (  oF  +  ,  F
) `  i ) `  z )  -  (
(  seq N (  oF  +  ,  F
) `  j ) `  z ) ) )  <_  ( abs `  (
(  seq N (  +  ,  M ) `  i )  -  (  seq N (  +  ,  M ) `  j
) ) ) )
201 simpllr 768 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  r  e.  RR+ )
202201rpred 11343 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  r  e.  RR )
203 lelttr 9726 . . . . . . . . . 10  |-  ( ( ( abs `  (
( (  seq N
(  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) ) )  e.  RR  /\  ( abs `  ( (  seq N (  +  ,  M ) `  i
)  -  (  seq N (  +  ,  M ) `  j
) ) )  e.  RR  /\  r  e.  RR )  ->  (
( ( abs `  (
( (  seq N
(  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) ) )  <_  ( abs `  (
(  seq N (  +  ,  M ) `  i )  -  (  seq N (  +  ,  M ) `  j
) ) )  /\  ( abs `  ( (  seq N (  +  ,  M ) `  i )  -  (  seq N (  +  ,  M ) `  j
) ) )  < 
r )  ->  ( abs `  ( ( (  seq N (  oF  +  ,  F
) `  i ) `  z )  -  (
(  seq N (  oF  +  ,  F
) `  j ) `  z ) ) )  <  r ) )
20469, 97, 202, 203syl3anc 1265 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
( ( abs `  (
( (  seq N
(  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) ) )  <_  ( abs `  (
(  seq N (  +  ,  M ) `  i )  -  (  seq N (  +  ,  M ) `  j
) ) )  /\  ( abs `  ( (  seq N (  +  ,  M ) `  i )  -  (  seq N (  +  ,  M ) `  j
) ) )  < 
r )  ->  ( abs `  ( ( (  seq N (  oF  +  ,  F
) `  i ) `  z )  -  (
(  seq N (  oF  +  ,  F
) `  j ) `  z ) ) )  <  r ) )
205200, 204mpand 680 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
( abs `  (
(  seq N (  +  ,  M ) `  i )  -  (  seq N (  +  ,  M ) `  j
) ) )  < 
r  ->  ( abs `  ( ( (  seq N (  oF  +  ,  F ) `
 i ) `  z )  -  (
(  seq N (  oF  +  ,  F
) `  j ) `  z ) ) )  <  r ) )
206205ralrimdva 2844 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( ( abs `  ( (  seq N
(  +  ,  M
) `  i )  -  (  seq N (  +  ,  M ) `
 j ) ) )  <  r  ->  A. z  e.  S  ( abs `  ( ( (  seq N (  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) ) )  <  r ) )
207206anassrs 653 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  j  e.  Z )  /\  i  e.  ( ZZ>=
`  j ) )  ->  ( ( abs `  ( (  seq N
(  +  ,  M
) `  i )  -  (  seq N (  +  ,  M ) `
 j ) ) )  <  r  ->  A. z  e.  S  ( abs `  ( ( (  seq N (  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) ) )  <  r ) )
208207ralimdva 2834 . . . . 5  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  j  e.  Z )  ->  ( A. i  e.  ( ZZ>=
`  j ) ( abs `  ( (  seq N (  +  ,  M ) `  i )  -  (  seq N (  +  ,  M ) `  j
) ) )  < 
r  ->  A. i  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( (  seq N (  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) ) )  <  r ) )
209208reximdva 2901 . . . 4  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( E. j  e.  Z  A. i  e.  ( ZZ>= `  j ) ( abs `  ( (  seq N
(  +  ,  M
) `  i )  -  (  seq N (  +  ,  M ) `
 j ) ) )  <  r  ->  E. j  e.  Z  A. i  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( (  seq N (  oF  +  ,  F
) `  i ) `  z )  -  (
(  seq N (  oF  +  ,  F
) `  j ) `  z ) ) )  <  r ) )
210209ralimdva 2834 . . 3  |-  ( ph  ->  ( A. r  e.  RR+  E. j  e.  Z  A. i  e.  ( ZZ>=
`  j ) ( abs `  ( (  seq N (  +  ,  M ) `  i )  -  (  seq N (  +  ,  M ) `  j
) ) )  < 
r  ->  A. r  e.  RR+  E. j  e.  Z  A. i  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( (  seq N (  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) ) )  <  r ) )
2115, 210mpd 15 . 2  |-  ( ph  ->  A. r  e.  RR+  E. j  e.  Z  A. i  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( (  seq N (  oF  +  ,  F ) `
 i ) `  z )  -  (
(  seq N (  oF  +  ,  F
) `  j ) `  z ) ) )  <  r )
2123, 1, 10, 55ulmcau 23342 . 2  |-  ( ph  ->  (  seq N (  oF  +  ,  F )  e.  dom  (
~~> u `  S )  <->  A. r  e.  RR+  E. j  e.  Z  A. i  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( (  seq N (  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) ) )  <  r ) )
213211, 212mpbird 236 1  |-  ( ph  ->  seq N (  oF  +  ,  F
)  e.  dom  ( ~~> u `  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1438    e. wcel 1869   A.wral 2776   E.wrex 2777   _Vcvv 3082    u. cun 3435    i^i cin 3436   (/)c0 3762   class class class wbr 4421    |-> cmpt 4480   dom cdm 4851    Fn wfn 5594   -->wf 5595   ` cfv 5599  (class class class)co 6303    oFcof 6541    ^m cmap 7478   CCcc 9539   RRcr 9540   0cc0 9541   1c1 9542    + caddc 9544    < clt 9677    <_ cle 9678    - cmin 9862   ZZcz 10939   ZZ>=cuz 11161   RR+crp 11304   ...cfz 11786    seqcseq 12214   abscabs 13291    ~~> cli 13541   sum_csu 13745   ~~> uculm 23323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-inf2 8150  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618  ax-pre-sup 9619  ax-addf 9620  ax-mulf 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-fal 1444  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-se 4811  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-isom 5608  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-of 6543  df-om 6705  df-1st 6805  df-2nd 6806  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-oadd 7192  df-er 7369  df-map 7480  df-pm 7481  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-sup 7960  df-inf 7961  df-oi 8029  df-card 8376  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-div 10272  df-nn 10612  df-2 10670  df-3 10671  df-n0 10872  df-z 10940  df-uz 11162  df-rp 11305  df-ico 11643  df-fz 11787  df-fzo 11918  df-fl 12029  df-seq 12215  df-exp 12274  df-hash 12517  df-cj 13156  df-re 13157  df-im 13158  df-sqrt 13292  df-abs 13293  df-limsup 13519  df-clim 13545  df-rlim 13546  df-sum 13746  df-ulm 23324
This theorem is referenced by:  pserulm  23369  lgamgulmlem6  23951
  Copyright terms: Public domain W3C validator