MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mtest Structured version   Unicode version

Theorem mtest 21849
Description: The Weierstrass M-test. If  F is a sequence of functions which are uniformly bounded by the convergent sequence  M ( k ), then the series generated by the sequence  F converges uniformly. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
mtest.z  |-  Z  =  ( ZZ>= `  N )
mtest.n  |-  ( ph  ->  N  e.  ZZ )
mtest.s  |-  ( ph  ->  S  e.  V )
mtest.f  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
mtest.m  |-  ( ph  ->  M  e.  W )
mtest.c  |-  ( (
ph  /\  k  e.  Z )  ->  ( M `  k )  e.  RR )
mtest.l  |-  ( (
ph  /\  ( k  e.  Z  /\  z  e.  S ) )  -> 
( abs `  (
( F `  k
) `  z )
)  <_  ( M `  k ) )
mtest.d  |-  ( ph  ->  seq N (  +  ,  M )  e. 
dom 
~~>  )
Assertion
Ref Expression
mtest  |-  ( ph  ->  seq N (  oF  +  ,  F
)  e.  dom  ( ~~> u `  S )
)
Distinct variable groups:    z, k, F    k, M, z    k, N, z    ph, k, z   
k, Z, z    S, k, z
Allowed substitution hints:    V( z, k)    W( z, k)

Proof of Theorem mtest
Dummy variables  i 
j  n  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mtest.n . . . 4  |-  ( ph  ->  N  e.  ZZ )
2 mtest.d . . . 4  |-  ( ph  ->  seq N (  +  ,  M )  e. 
dom 
~~>  )
3 mtest.z . . . . 5  |-  Z  =  ( ZZ>= `  N )
43climcau 13140 . . . 4  |-  ( ( N  e.  ZZ  /\  seq N (  +  ,  M )  e.  dom  ~~>  )  ->  A. r  e.  RR+  E. j  e.  Z  A. i  e.  ( ZZ>= `  j ) ( abs `  ( (  seq N
(  +  ,  M
) `  i )  -  (  seq N (  +  ,  M ) `
 j ) ) )  <  r )
51, 2, 4syl2anc 661 . . 3  |-  ( ph  ->  A. r  e.  RR+  E. j  e.  Z  A. i  e.  ( ZZ>= `  j ) ( abs `  ( (  seq N
(  +  ,  M
) `  i )  -  (  seq N (  +  ,  M ) `
 j ) ) )  <  r )
6 seqfn 11810 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ZZ  ->  seq N (  oF  +  ,  F )  Fn  ( ZZ>= `  N
) )
71, 6syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  seq N (  oF  +  ,  F
)  Fn  ( ZZ>= `  N ) )
83fneq2i 5501 . . . . . . . . . . . . . . . . . 18  |-  (  seq N (  oF  +  ,  F )  Fn  Z  <->  seq N (  oF  +  ,  F )  Fn  ( ZZ>=
`  N ) )
97, 8sylibr 212 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  seq N (  oF  +  ,  F
)  Fn  Z )
10 mtest.s . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  S  e.  V )
11 elex 2976 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( S  e.  V  ->  S  e.  _V )
1210, 11syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  S  e.  _V )
1312adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  Z )  ->  S  e.  _V )
14 simpr 461 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  Z )  ->  i  e.  Z )
1514, 3syl6eleq 2528 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  Z )  ->  i  e.  ( ZZ>= `  N )
)
16 mtest.f . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
1716adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  i  e.  Z )  ->  F : Z --> ( CC  ^m  S ) )
18 elfzuz 11441 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( k  e.  ( N ... i )  ->  k  e.  ( ZZ>= `  N )
)
1918, 3syl6eleqr 2529 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( k  e.  ( N ... i )  ->  k  e.  Z )
20 ffvelrn 5836 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F : Z --> ( CC 
^m  S )  /\  k  e.  Z )  ->  ( F `  k
)  e.  ( CC 
^m  S ) )
2117, 19, 20syl2an 477 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  i  e.  Z )  /\  k  e.  ( N ... i
) )  ->  ( F `  k )  e.  ( CC  ^m  S
) )
22 elmapi 7226 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( F `  k )  e.  ( CC  ^m  S )  ->  ( F `  k ) : S --> CC )
2321, 22syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  i  e.  Z )  /\  k  e.  ( N ... i
) )  ->  ( F `  k ) : S --> CC )
2423feqmptd 5739 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  Z )  /\  k  e.  ( N ... i
) )  ->  ( F `  k )  =  ( z  e.  S  |->  ( ( F `
 k ) `  z ) ) )
2519adantl 466 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  i  e.  Z )  /\  k  e.  ( N ... i
) )  ->  k  e.  Z )
26 fveq2 5686 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
2726fveq1d 5688 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  k  ->  (
( F `  n
) `  z )  =  ( ( F `
 k ) `  z ) )
28 eqid 2438 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) )  =  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) )
29 fvex 5696 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F `  k ) `
 z )  e. 
_V
3027, 28, 29fvmpt 5769 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  Z  ->  (
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) `  k
)  =  ( ( F `  k ) `
 z ) )
3125, 30syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  i  e.  Z )  /\  k  e.  ( N ... i
) )  ->  (
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) `  k
)  =  ( ( F `  k ) `
 z ) )
3231mpteq2dv 4374 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  Z )  /\  k  e.  ( N ... i
) )  ->  (
z  e.  S  |->  ( ( n  e.  Z  |->  ( ( F `  n ) `  z
) ) `  k
) )  =  ( z  e.  S  |->  ( ( F `  k
) `  z )
) )
3324, 32eqtr4d 2473 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  Z )  /\  k  e.  ( N ... i
) )  ->  ( F `  k )  =  ( z  e.  S  |->  ( ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) `
 k ) ) )
3413, 15, 33seqof 11855 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  i  e.  Z )  ->  (  seq N (  oF  +  ,  F ) `
 i )  =  ( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  i ) ) )
351adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  z  e.  S )  ->  N  e.  ZZ )
3616ffvelrnda 5838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  e.  ( CC  ^m  S
) )
37 elmapi 7226 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( F `  n )  e.  ( CC  ^m  S )  ->  ( F `  n ) : S --> CC )
3836, 37syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n ) : S --> CC )
3938ffvelrnda 5838 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  n  e.  Z )  /\  z  e.  S )  ->  (
( F `  n
) `  z )  e.  CC )
4039an32s 802 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  z  e.  S )  /\  n  e.  Z )  ->  (
( F `  n
) `  z )  e.  CC )
4140, 28fmptd 5862 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  z  e.  S )  ->  (
n  e.  Z  |->  ( ( F `  n
) `  z )
) : Z --> CC )
4241ffvelrnda 5838 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  z  e.  S )  /\  i  e.  Z )  ->  (
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) `  i
)  e.  CC )
433, 35, 42serf 11826 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  z  e.  S )  ->  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) : Z --> CC )
4443ffvelrnda 5838 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  z  e.  S )  /\  i  e.  Z )  ->  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  i )  e.  CC )
4544an32s 802 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  Z )  /\  z  e.  S )  ->  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  i )  e.  CC )
46 eqid 2438 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  S  |->  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  i ) )  =  ( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  i ) )
4745, 46fmptd 5862 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  Z )  ->  (
z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) ) ) `
 i ) ) : S --> CC )
48 cnex 9355 . . . . . . . . . . . . . . . . . . . . 21  |-  CC  e.  _V
49 elmapg 7219 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( CC  e.  _V  /\  S  e.  _V )  ->  ( ( z  e.  S  |->  (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  i
) )  e.  ( CC  ^m  S )  <-> 
( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  i ) ) : S --> CC ) )
5048, 13, 49sylancr 663 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  Z )  ->  (
( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  i ) )  e.  ( CC 
^m  S )  <->  ( z  e.  S  |->  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  i ) ) : S --> CC ) )
5147, 50mpbird 232 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  i  e.  Z )  ->  (
z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) ) ) `
 i ) )  e.  ( CC  ^m  S ) )
5234, 51eqeltrd 2512 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  Z )  ->  (  seq N (  oF  +  ,  F ) `
 i )  e.  ( CC  ^m  S
) )
5352ralrimiva 2794 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. i  e.  Z  (  seq N (  oF  +  ,  F
) `  i )  e.  ( CC  ^m  S
) )
54 ffnfv 5864 . . . . . . . . . . . . . . . . 17  |-  (  seq N (  oF  +  ,  F ) : Z --> ( CC 
^m  S )  <->  (  seq N (  oF  +  ,  F )  Fn  Z  /\  A. i  e.  Z  (  seq N (  oF  +  ,  F ) `
 i )  e.  ( CC  ^m  S
) ) )
559, 53, 54sylanbrc 664 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  seq N (  oF  +  ,  F
) : Z --> ( CC 
^m  S ) )
5655ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  seq N (  oF  +  ,  F
) : Z --> ( CC 
^m  S ) )
573uztrn2 10870 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  Z  /\  i  e.  ( ZZ>= `  j ) )  -> 
i  e.  Z )
5857adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  i  e.  Z
)
5956, 58ffvelrnd 5839 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  (  seq N
(  oF  +  ,  F ) `  i
)  e.  ( CC 
^m  S ) )
60 elmapi 7226 . . . . . . . . . . . . . 14  |-  ( (  seq N (  oF  +  ,  F
) `  i )  e.  ( CC  ^m  S
)  ->  (  seq N (  oF  +  ,  F ) `
 i ) : S --> CC )
6159, 60syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  (  seq N
(  oF  +  ,  F ) `  i
) : S --> CC )
6261ffvelrnda 5838 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
(  seq N (  oF  +  ,  F
) `  i ) `  z )  e.  CC )
63 simprl 755 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  j  e.  Z
)
6456, 63ffvelrnd 5839 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  (  seq N
(  oF  +  ,  F ) `  j
)  e.  ( CC 
^m  S ) )
65 elmapi 7226 . . . . . . . . . . . . . 14  |-  ( (  seq N (  oF  +  ,  F
) `  j )  e.  ( CC  ^m  S
)  ->  (  seq N (  oF  +  ,  F ) `
 j ) : S --> CC )
6664, 65syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  (  seq N
(  oF  +  ,  F ) `  j
) : S --> CC )
6766ffvelrnda 5838 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
(  seq N (  oF  +  ,  F
) `  j ) `  z )  e.  CC )
6862, 67subcld 9711 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
( (  seq N
(  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) )  e.  CC )
6968abscld 12914 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( abs `  ( ( (  seq N (  oF  +  ,  F
) `  i ) `  z )  -  (
(  seq N (  oF  +  ,  F
) `  j ) `  z ) ) )  e.  RR )
70 fzfid 11787 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
( j  +  1 ) ... i )  e.  Fin )
71 ssun2 3515 . . . . . . . . . . . . . . . 16  |-  ( ( j  +  1 ) ... i )  C_  ( ( N ... j )  u.  (
( j  +  1 ) ... i ) )
7263, 3syl6eleq 2528 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  j  e.  (
ZZ>= `  N ) )
73 simprr 756 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  i  e.  (
ZZ>= `  j ) )
74 elfzuzb 11439 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  ( N ... i )  <->  ( j  e.  ( ZZ>= `  N )  /\  i  e.  ( ZZ>=
`  j ) ) )
7572, 73, 74sylanbrc 664 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  j  e.  ( N ... i ) )
76 fzsplit 11467 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( N ... i )  ->  ( N ... i )  =  ( ( N ... j )  u.  (
( j  +  1 ) ... i ) ) )
7775, 76syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( N ... i )  =  ( ( N ... j
)  u.  ( ( j  +  1 ) ... i ) ) )
7871, 77syl5sseqr 3400 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( ( j  +  1 ) ... i )  C_  ( N ... i ) )
7978sselda 3351 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  k  e.  ( N ... i
) )
8079adantlr 714 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  k  e.  ( N ... i
) )
8116ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  F : Z --> ( CC  ^m  S ) )
8281, 19, 20syl2an 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... i
) )  ->  ( F `  k )  e.  ( CC  ^m  S
) )
8382, 22syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... i
) )  ->  ( F `  k ) : S --> CC )
8483ffvelrnda 5838 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... i
) )  /\  z  e.  S )  ->  (
( F `  k
) `  z )  e.  CC )
8584an32s 802 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( N ... i
) )  ->  (
( F `  k
) `  z )  e.  CC )
8680, 85syldan 470 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  (
( F `  k
) `  z )  e.  CC )
8786abscld 12914 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  ( abs `  ( ( F `
 k ) `  z ) )  e.  RR )
8870, 87fsumrecl 13203 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  sum_ k  e.  ( ( j  +  1 ) ... i
) ( abs `  (
( F `  k
) `  z )
)  e.  RR )
89 mtest.c . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  Z )  ->  ( M `  k )  e.  RR )
903, 1, 89serfre 11827 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  seq N (  +  ,  M ) : Z --> RR )
9190ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  seq N (  +  ,  M ) : Z --> RR )
9291, 58ffvelrnd 5839 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  (  seq N
(  +  ,  M
) `  i )  e.  RR )
9391, 63ffvelrnd 5839 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  (  seq N
(  +  ,  M
) `  j )  e.  RR )
9492, 93resubcld 9768 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( (  seq N (  +  ,  M ) `  i
)  -  (  seq N (  +  ,  M ) `  j
) )  e.  RR )
9594recnd 9404 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( (  seq N (  +  ,  M ) `  i
)  -  (  seq N (  +  ,  M ) `  j
) )  e.  CC )
9695abscld 12914 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( abs `  (
(  seq N (  +  ,  M ) `  i )  -  (  seq N (  +  ,  M ) `  j
) ) )  e.  RR )
9796adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( abs `  ( (  seq N (  +  ,  M ) `  i
)  -  (  seq N (  +  ,  M ) `  j
) ) )  e.  RR )
9857, 34sylan2 474 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  Z  /\  i  e.  ( ZZ>= `  j )
) )  ->  (  seq N (  oF  +  ,  F ) `
 i )  =  ( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  i ) ) )
9998adantlr 714 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  (  seq N
(  oF  +  ,  F ) `  i
)  =  ( z  e.  S  |->  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  i ) ) )
10099fveq1d 5688 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( (  seq N (  oF  +  ,  F ) `
 i ) `  z )  =  ( ( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  i ) ) `  z ) )
101 fvex 5696 . . . . . . . . . . . . . . . 16  |-  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  i )  e.  _V
10246fvmpt2 5776 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  S  /\  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) ) ) `
 i )  e. 
_V )  ->  (
( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  i ) ) `  z )  =  (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  i
) )
103101, 102mpan2 671 . . . . . . . . . . . . . . 15  |-  ( z  e.  S  ->  (
( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  i ) ) `  z )  =  (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  i
) )
104100, 103sylan9eq 2490 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
(  seq N (  oF  +  ,  F
) `  i ) `  z )  =  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) ) ) `
 i ) )
10534ralrimiva 2794 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A. i  e.  Z  (  seq N (  oF  +  ,  F
) `  i )  =  ( z  e.  S  |->  (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  i
) ) )
106105ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  A. i  e.  Z  (  seq N (  oF  +  ,  F
) `  i )  =  ( z  e.  S  |->  (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  i
) ) )
107 fveq2 5686 . . . . . . . . . . . . . . . . . . 19  |-  ( i  =  j  ->  (  seq N (  oF  +  ,  F ) `
 i )  =  (  seq N (  oF  +  ,  F ) `  j
) )
108 fveq2 5686 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  =  j  ->  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  i )  =  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) ) ) `
 j ) )
109108mpteq2dv 4374 . . . . . . . . . . . . . . . . . . 19  |-  ( i  =  j  ->  (
z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) ) ) `
 i ) )  =  ( z  e.  S  |->  (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  j
) ) )
110107, 109eqeq12d 2452 . . . . . . . . . . . . . . . . . 18  |-  ( i  =  j  ->  (
(  seq N (  oF  +  ,  F
) `  i )  =  ( z  e.  S  |->  (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  i
) )  <->  (  seq N (  oF  +  ,  F ) `
 j )  =  ( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  j ) ) ) )
111110rspccv 3065 . . . . . . . . . . . . . . . . 17  |-  ( A. i  e.  Z  (  seq N (  oF  +  ,  F ) `
 i )  =  ( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  i ) )  ->  ( j  e.  Z  ->  (  seq N (  oF  +  ,  F ) `
 j )  =  ( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  j ) ) ) )
112106, 63, 111sylc 60 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  (  seq N
(  oF  +  ,  F ) `  j
)  =  ( z  e.  S  |->  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  j ) ) )
113112fveq1d 5688 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z )  =  ( ( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  j ) ) `  z ) )
114 fvex 5696 . . . . . . . . . . . . . . . 16  |-  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  j )  e.  _V
115 eqid 2438 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  S  |->  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  j ) )  =  ( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  j ) )
116115fvmpt2 5776 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  S  /\  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) ) ) `
 j )  e. 
_V )  ->  (
( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  j ) ) `  z )  =  (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  j
) )
117114, 116mpan2 671 . . . . . . . . . . . . . . 15  |-  ( z  e.  S  ->  (
( z  e.  S  |->  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  j ) ) `  z )  =  (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  j
) )
118113, 117sylan9eq 2490 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
(  seq N (  oF  +  ,  F
) `  j ) `  z )  =  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) ) ) `
 j ) )
119104, 118oveq12d 6104 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
( (  seq N
(  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) )  =  ( (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  i
)  -  (  seq N (  +  , 
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) ) `  j ) ) )
12019adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( N ... i
) )  ->  k  e.  Z )
121120, 30syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( N ... i
) )  ->  (
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) `  k
)  =  ( ( F `  k ) `
 z ) )
12258adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  i  e.  Z )
123122, 3syl6eleq 2528 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  i  e.  ( ZZ>= `  N )
)
124121, 123, 85fsumser 13199 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  sum_ k  e.  ( N ... i
) ( ( F `
 k ) `  z )  =  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) ) ) `
 i ) )
125 elfzuz 11441 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( N ... j )  ->  k  e.  ( ZZ>= `  N )
)
126125, 3syl6eleqr 2529 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( N ... j )  ->  k  e.  Z )
127126adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( N ... j
) )  ->  k  e.  Z )
128127, 30syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( N ... j
) )  ->  (
( n  e.  Z  |->  ( ( F `  n ) `  z
) ) `  k
)  =  ( ( F `  k ) `
 z ) )
12963adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  j  e.  Z )
130129, 3syl6eleq 2528 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  j  e.  ( ZZ>= `  N )
)
13181, 126, 20syl2an 477 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... j
) )  ->  ( F `  k )  e.  ( CC  ^m  S
) )
132131, 22syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... j
) )  ->  ( F `  k ) : S --> CC )
133132ffvelrnda 5838 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... j
) )  /\  z  e.  S )  ->  (
( F `  k
) `  z )  e.  CC )
134133an32s 802 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( N ... j
) )  ->  (
( F `  k
) `  z )  e.  CC )
135128, 130, 134fsumser 13199 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  sum_ k  e.  ( N ... j
) ( ( F `
 k ) `  z )  =  (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `
 n ) `  z ) ) ) `
 j ) )
136124, 135oveq12d 6104 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( sum_ k  e.  ( N ... i ) ( ( F `  k
) `  z )  -  sum_ k  e.  ( N ... j ) ( ( F `  k ) `  z
) )  =  ( (  seq N (  +  ,  ( n  e.  Z  |->  ( ( F `  n ) `
 z ) ) ) `  i )  -  (  seq N
(  +  ,  ( n  e.  Z  |->  ( ( F `  n
) `  z )
) ) `  j
) ) )
137 eluzelre 10863 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  ( ZZ>= `  N
)  ->  j  e.  RR )
13872, 137syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  j  e.  RR )
139138ltp1d 10255 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  j  <  (
j  +  1 ) )
140 fzdisj 11468 . . . . . . . . . . . . . . . . . 18  |-  ( j  <  ( j  +  1 )  ->  (
( N ... j
)  i^i  ( (
j  +  1 ) ... i ) )  =  (/) )
141139, 140syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( ( N ... j )  i^i  ( ( j  +  1 ) ... i
) )  =  (/) )
142141adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
( N ... j
)  i^i  ( (
j  +  1 ) ... i ) )  =  (/) )
14377adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( N ... i )  =  ( ( N ... j )  u.  (
( j  +  1 ) ... i ) ) )
144 fzfid 11787 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( N ... i )  e. 
Fin )
145142, 143, 144, 85fsumsplit 13208 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  sum_ k  e.  ( N ... i
) ( ( F `
 k ) `  z )  =  (
sum_ k  e.  ( N ... j ) ( ( F `  k ) `  z
)  +  sum_ k  e.  ( ( j  +  1 ) ... i
) ( ( F `
 k ) `  z ) ) )
146145eqcomd 2443 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( sum_ k  e.  ( N ... j ) ( ( F `  k
) `  z )  +  sum_ k  e.  ( ( j  +  1 ) ... i ) ( ( F `  k ) `  z
) )  =  sum_ k  e.  ( N ... i ) ( ( F `  k ) `
 z ) )
147144, 85fsumcl 13202 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  sum_ k  e.  ( N ... i
) ( ( F `
 k ) `  z )  e.  CC )
148 fzfid 11787 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( N ... j )  e. 
Fin )
149148, 134fsumcl 13202 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  sum_ k  e.  ( N ... j
) ( ( F `
 k ) `  z )  e.  CC )
15070, 86fsumcl 13202 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  sum_ k  e.  ( ( j  +  1 ) ... i
) ( ( F `
 k ) `  z )  e.  CC )
151147, 149, 150subaddd 9729 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
( sum_ k  e.  ( N ... i ) ( ( F `  k ) `  z
)  -  sum_ k  e.  ( N ... j
) ( ( F `
 k ) `  z ) )  = 
sum_ k  e.  ( ( j  +  1 ) ... i ) ( ( F `  k ) `  z
)  <->  ( sum_ k  e.  ( N ... j
) ( ( F `
 k ) `  z )  +  sum_ k  e.  ( (
j  +  1 ) ... i ) ( ( F `  k
) `  z )
)  =  sum_ k  e.  ( N ... i
) ( ( F `
 k ) `  z ) ) )
152146, 151mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( sum_ k  e.  ( N ... i ) ( ( F `  k
) `  z )  -  sum_ k  e.  ( N ... j ) ( ( F `  k ) `  z
) )  =  sum_ k  e.  ( (
j  +  1 ) ... i ) ( ( F `  k
) `  z )
)
153119, 136, 1523eqtr2d 2476 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
( (  seq N
(  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) )  = 
sum_ k  e.  ( ( j  +  1 ) ... i ) ( ( F `  k ) `  z
) )
154153fveq2d 5690 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( abs `  ( ( (  seq N (  oF  +  ,  F
) `  i ) `  z )  -  (
(  seq N (  oF  +  ,  F
) `  j ) `  z ) ) )  =  ( abs `  sum_ k  e.  ( (
j  +  1 ) ... i ) ( ( F `  k
) `  z )
) )
15570, 86fsumabs 13256 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( abs `  sum_ k  e.  ( ( j  +  1 ) ... i ) ( ( F `  k ) `  z
) )  <_  sum_ k  e.  ( ( j  +  1 ) ... i
) ( abs `  (
( F `  k
) `  z )
) )
156154, 155eqbrtrd 4307 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( abs `  ( ( (  seq N (  oF  +  ,  F
) `  i ) `  z )  -  (
(  seq N (  oF  +  ,  F
) `  j ) `  z ) ) )  <_  sum_ k  e.  ( ( j  +  1 ) ... i ) ( abs `  (
( F `  k
) `  z )
) )
157 simpll 753 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ph )
158157, 19, 89syl2an 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... i
) )  ->  ( M `  k )  e.  RR )
15979, 158syldan 470 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  ( M `  k )  e.  RR )
160159adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  ( M `  k )  e.  RR )
16180, 19syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  k  e.  Z )
162 mtest.l . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  e.  Z  /\  z  e.  S ) )  -> 
( abs `  (
( F `  k
) `  z )
)  <_  ( M `  k ) )
163162adantlr 714 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
k  e.  Z  /\  z  e.  S )
)  ->  ( abs `  ( ( F `  k ) `  z
) )  <_  ( M `  k )
)
164163adantlr 714 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  ( k  e.  Z  /\  z  e.  S ) )  -> 
( abs `  (
( F `  k
) `  z )
)  <_  ( M `  k ) )
165164anass1rs 805 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  Z )  ->  ( abs `  ( ( F `
 k ) `  z ) )  <_ 
( M `  k
) )
166161, 165syldan 470 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  ( abs `  ( ( F `
 k ) `  z ) )  <_ 
( M `  k
) )
16770, 87, 160, 166fsumle 13254 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  sum_ k  e.  ( ( j  +  1 ) ... i
) ( abs `  (
( F `  k
) `  z )
)  <_  sum_ k  e.  ( ( j  +  1 ) ... i
) ( M `  k ) )
168 eqidd 2439 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... i
) )  ->  ( M `  k )  =  ( M `  k ) )
16958, 3syl6eleq 2528 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  i  e.  (
ZZ>= `  N ) )
170158recnd 9404 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... i
) )  ->  ( M `  k )  e.  CC )
171168, 169, 170fsumser 13199 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  sum_ k  e.  ( N ... i ) ( M `  k
)  =  (  seq N (  +  ,  M ) `  i
) )
172 eqidd 2439 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... j
) )  ->  ( M `  k )  =  ( M `  k ) )
173157, 126, 89syl2an 477 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... j
) )  ->  ( M `  k )  e.  RR )
174173recnd 9404 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( N ... j
) )  ->  ( M `  k )  e.  CC )
175172, 72, 174fsumser 13199 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  sum_ k  e.  ( N ... j ) ( M `  k
)  =  (  seq N (  +  ,  M ) `  j
) )
176171, 175oveq12d 6104 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( sum_ k  e.  ( N ... i
) ( M `  k )  -  sum_ k  e.  ( N ... j ) ( M `
 k ) )  =  ( (  seq N (  +  ,  M ) `  i
)  -  (  seq N (  +  ,  M ) `  j
) ) )
177 fzfid 11787 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( N ... i )  e.  Fin )
178141, 77, 177, 170fsumsplit 13208 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  sum_ k  e.  ( N ... i ) ( M `  k
)  =  ( sum_ k  e.  ( N ... j ) ( M `
 k )  + 
sum_ k  e.  ( ( j  +  1 ) ... i ) ( M `  k
) ) )
179178eqcomd 2443 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( sum_ k  e.  ( N ... j
) ( M `  k )  +  sum_ k  e.  ( (
j  +  1 ) ... i ) ( M `  k ) )  =  sum_ k  e.  ( N ... i
) ( M `  k ) )
180177, 170fsumcl 13202 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  sum_ k  e.  ( N ... i ) ( M `  k
)  e.  CC )
181 fzfid 11787 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( N ... j )  e.  Fin )
182181, 174fsumcl 13202 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  sum_ k  e.  ( N ... j ) ( M `  k
)  e.  CC )
183 fzfid 11787 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( ( j  +  1 ) ... i )  e.  Fin )
18479, 170syldan 470 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  ( M `  k )  e.  CC )
185183, 184fsumcl 13202 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  sum_ k  e.  ( ( j  +  1 ) ... i ) ( M `  k
)  e.  CC )
186180, 182, 185subaddd 9729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( ( sum_ k  e.  ( N ... i ) ( M `
 k )  -  sum_ k  e.  ( N ... j ) ( M `  k ) )  =  sum_ k  e.  ( ( j  +  1 ) ... i
) ( M `  k )  <->  ( sum_ k  e.  ( N ... j ) ( M `
 k )  + 
sum_ k  e.  ( ( j  +  1 ) ... i ) ( M `  k
) )  =  sum_ k  e.  ( N ... i ) ( M `
 k ) ) )
187179, 186mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( sum_ k  e.  ( N ... i
) ( M `  k )  -  sum_ k  e.  ( N ... j ) ( M `
 k ) )  =  sum_ k  e.  ( ( j  +  1 ) ... i ) ( M `  k
) )
188176, 187eqtr3d 2472 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( (  seq N (  +  ,  M ) `  i
)  -  (  seq N (  +  ,  M ) `  j
) )  =  sum_ k  e.  ( (
j  +  1 ) ... i ) ( M `  k ) )
189188fveq2d 5690 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( abs `  (
(  seq N (  +  ,  M ) `  i )  -  (  seq N (  +  ,  M ) `  j
) ) )  =  ( abs `  sum_ k  e.  ( (
j  +  1 ) ... i ) ( M `  k ) ) )
190189adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( abs `  ( (  seq N (  +  ,  M ) `  i
)  -  (  seq N (  +  ,  M ) `  j
) ) )  =  ( abs `  sum_ k  e.  ( (
j  +  1 ) ... i ) ( M `  k ) ) )
191188, 94eqeltrrd 2513 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  sum_ k  e.  ( ( j  +  1 ) ... i ) ( M `  k
)  e.  RR )
192191adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  sum_ k  e.  ( ( j  +  1 ) ... i
) ( M `  k )  e.  RR )
193 0red 9379 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  0  e.  RR )
19486absge0d 12922 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  0  <_  ( abs `  (
( F `  k
) `  z )
) )
195193, 87, 160, 194, 166letrd 9520 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  /\  k  e.  ( ( j  +  1 ) ... i
) )  ->  0  <_  ( M `  k
) )
19670, 160, 195fsumge0 13250 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  0  <_ 
sum_ k  e.  ( ( j  +  1 ) ... i ) ( M `  k
) )
197192, 196absidd 12901 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( abs `  sum_ k  e.  ( ( j  +  1 ) ... i ) ( M `  k
) )  =  sum_ k  e.  ( (
j  +  1 ) ... i ) ( M `  k ) )
198190, 197eqtrd 2470 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( abs `  ( (  seq N (  +  ,  M ) `  i
)  -  (  seq N (  +  ,  M ) `  j
) ) )  = 
sum_ k  e.  ( ( j  +  1 ) ... i ) ( M `  k
) )
199167, 198breqtrrd 4313 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  sum_ k  e.  ( ( j  +  1 ) ... i
) ( abs `  (
( F `  k
) `  z )
)  <_  ( abs `  ( (  seq N
(  +  ,  M
) `  i )  -  (  seq N (  +  ,  M ) `
 j ) ) ) )
20069, 88, 97, 156, 199letrd 9520 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  ( abs `  ( ( (  seq N (  oF  +  ,  F
) `  i ) `  z )  -  (
(  seq N (  oF  +  ,  F
) `  j ) `  z ) ) )  <_  ( abs `  (
(  seq N (  +  ,  M ) `  i )  -  (  seq N (  +  ,  M ) `  j
) ) ) )
201 simpllr 758 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  r  e.  RR+ )
202201rpred 11019 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  r  e.  RR )
203 lelttr 9457 . . . . . . . . . 10  |-  ( ( ( abs `  (
( (  seq N
(  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) ) )  e.  RR  /\  ( abs `  ( (  seq N (  +  ,  M ) `  i
)  -  (  seq N (  +  ,  M ) `  j
) ) )  e.  RR  /\  r  e.  RR )  ->  (
( ( abs `  (
( (  seq N
(  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) ) )  <_  ( abs `  (
(  seq N (  +  ,  M ) `  i )  -  (  seq N (  +  ,  M ) `  j
) ) )  /\  ( abs `  ( (  seq N (  +  ,  M ) `  i )  -  (  seq N (  +  ,  M ) `  j
) ) )  < 
r )  ->  ( abs `  ( ( (  seq N (  oF  +  ,  F
) `  i ) `  z )  -  (
(  seq N (  oF  +  ,  F
) `  j ) `  z ) ) )  <  r ) )
20469, 97, 202, 203syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
( ( abs `  (
( (  seq N
(  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) ) )  <_  ( abs `  (
(  seq N (  +  ,  M ) `  i )  -  (  seq N (  +  ,  M ) `  j
) ) )  /\  ( abs `  ( (  seq N (  +  ,  M ) `  i )  -  (  seq N (  +  ,  M ) `  j
) ) )  < 
r )  ->  ( abs `  ( ( (  seq N (  oF  +  ,  F
) `  i ) `  z )  -  (
(  seq N (  oF  +  ,  F
) `  j ) `  z ) ) )  <  r ) )
205200, 204mpand 675 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( j  e.  Z  /\  i  e.  ( ZZ>=
`  j ) ) )  /\  z  e.  S )  ->  (
( abs `  (
(  seq N (  +  ,  M ) `  i )  -  (  seq N (  +  ,  M ) `  j
) ) )  < 
r  ->  ( abs `  ( ( (  seq N (  oF  +  ,  F ) `
 i ) `  z )  -  (
(  seq N (  oF  +  ,  F
) `  j ) `  z ) ) )  <  r ) )
206205ralrimdva 2801 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
j  e.  Z  /\  i  e.  ( ZZ>= `  j ) ) )  ->  ( ( abs `  ( (  seq N
(  +  ,  M
) `  i )  -  (  seq N (  +  ,  M ) `
 j ) ) )  <  r  ->  A. z  e.  S  ( abs `  ( ( (  seq N (  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) ) )  <  r ) )
207206anassrs 648 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  j  e.  Z )  /\  i  e.  ( ZZ>=
`  j ) )  ->  ( ( abs `  ( (  seq N
(  +  ,  M
) `  i )  -  (  seq N (  +  ,  M ) `
 j ) ) )  <  r  ->  A. z  e.  S  ( abs `  ( ( (  seq N (  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) ) )  <  r ) )
208207ralimdva 2789 . . . . 5  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  j  e.  Z )  ->  ( A. i  e.  ( ZZ>=
`  j ) ( abs `  ( (  seq N (  +  ,  M ) `  i )  -  (  seq N (  +  ,  M ) `  j
) ) )  < 
r  ->  A. i  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( (  seq N (  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) ) )  <  r ) )
209208reximdva 2823 . . . 4  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( E. j  e.  Z  A. i  e.  ( ZZ>= `  j ) ( abs `  ( (  seq N
(  +  ,  M
) `  i )  -  (  seq N (  +  ,  M ) `
 j ) ) )  <  r  ->  E. j  e.  Z  A. i  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( (  seq N (  oF  +  ,  F
) `  i ) `  z )  -  (
(  seq N (  oF  +  ,  F
) `  j ) `  z ) ) )  <  r ) )
210209ralimdva 2789 . . 3  |-  ( ph  ->  ( A. r  e.  RR+  E. j  e.  Z  A. i  e.  ( ZZ>=
`  j ) ( abs `  ( (  seq N (  +  ,  M ) `  i )  -  (  seq N (  +  ,  M ) `  j
) ) )  < 
r  ->  A. r  e.  RR+  E. j  e.  Z  A. i  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( (  seq N (  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) ) )  <  r ) )
2115, 210mpd 15 . 2  |-  ( ph  ->  A. r  e.  RR+  E. j  e.  Z  A. i  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( (  seq N (  oF  +  ,  F ) `
 i ) `  z )  -  (
(  seq N (  oF  +  ,  F
) `  j ) `  z ) ) )  <  r )
2123, 1, 10, 55ulmcau 21840 . 2  |-  ( ph  ->  (  seq N (  oF  +  ,  F )  e.  dom  (
~~> u `  S )  <->  A. r  e.  RR+  E. j  e.  Z  A. i  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( (  seq N (  oF  +  ,  F ) `  i
) `  z )  -  ( (  seq N (  oF  +  ,  F ) `
 j ) `  z ) ) )  <  r ) )
213211, 212mpbird 232 1  |-  ( ph  ->  seq N (  oF  +  ,  F
)  e.  dom  ( ~~> u `  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710   E.wrex 2711   _Vcvv 2967    u. cun 3321    i^i cin 3322   (/)c0 3632   class class class wbr 4287    e. cmpt 4345   dom cdm 4835    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6086    oFcof 6313    ^m cmap 7206   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    < clt 9410    <_ cle 9411    - cmin 9587   ZZcz 10638   ZZ>=cuz 10853   RR+crp 10983   ...cfz 11429    seqcseq 11798   abscabs 12715    ~~> cli 12954   sum_csu 13155   ~~> uculm 21821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-oi 7716  df-card 8101  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-ico 11298  df-fz 11430  df-fzo 11541  df-fl 11634  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-sum 13156  df-ulm 21822
This theorem is referenced by:  pserulm  21867  lgamgulmlem6  26989
  Copyright terms: Public domain W3C validator