MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumvma Structured version   Visualization version   GIF version

Theorem fsumvma 24738
Description: Rewrite a sum over the von Mangoldt function as a sum over prime powers. (Contributed by Mario Carneiro, 15-Apr-2016.)
Hypotheses
Ref Expression
fsumvma.1 (𝑥 = (𝑝𝑘) → 𝐵 = 𝐶)
fsumvma.2 (𝜑𝐴 ∈ Fin)
fsumvma.3 (𝜑𝐴 ⊆ ℕ)
fsumvma.4 (𝜑𝑃 ∈ Fin)
fsumvma.5 (𝜑 → ((𝑝𝑃𝑘𝐾) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴)))
fsumvma.6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
fsumvma.7 ((𝜑 ∧ (𝑥𝐴 ∧ (Λ‘𝑥) = 0)) → 𝐵 = 0)
Assertion
Ref Expression
fsumvma (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑝𝑃 Σ𝑘𝐾 𝐶)
Distinct variable groups:   𝑘,𝑝,𝑥,𝐴   𝑥,𝐶   𝑘,𝐾,𝑥   𝜑,𝑘,𝑝,𝑥   𝐵,𝑘,𝑝   𝑃,𝑘,𝑝,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘,𝑝)   𝐾(𝑝)

Proof of Theorem fsumvma
Dummy variables 𝑎 𝑧 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6113 . . . . 5 (↑‘𝑧) ∈ V
21a1i 11 . . . 4 (𝑧 = ⟨𝑝, 𝑘⟩ → (↑‘𝑧) ∈ V)
3 fveq2 6103 . . . . . . . 8 (𝑧 = ⟨𝑝, 𝑘⟩ → (↑‘𝑧) = (↑‘⟨𝑝, 𝑘⟩))
4 df-ov 6552 . . . . . . . 8 (𝑝𝑘) = (↑‘⟨𝑝, 𝑘⟩)
53, 4syl6eqr 2662 . . . . . . 7 (𝑧 = ⟨𝑝, 𝑘⟩ → (↑‘𝑧) = (𝑝𝑘))
65eqeq2d 2620 . . . . . 6 (𝑧 = ⟨𝑝, 𝑘⟩ → (𝑥 = (↑‘𝑧) ↔ 𝑥 = (𝑝𝑘)))
76biimpa 500 . . . . 5 ((𝑧 = ⟨𝑝, 𝑘⟩ ∧ 𝑥 = (↑‘𝑧)) → 𝑥 = (𝑝𝑘))
8 fsumvma.1 . . . . 5 (𝑥 = (𝑝𝑘) → 𝐵 = 𝐶)
97, 8syl 17 . . . 4 ((𝑧 = ⟨𝑝, 𝑘⟩ ∧ 𝑥 = (↑‘𝑧)) → 𝐵 = 𝐶)
102, 9csbied 3526 . . 3 (𝑧 = ⟨𝑝, 𝑘⟩ → (↑‘𝑧) / 𝑥𝐵 = 𝐶)
11 fsumvma.4 . . 3 (𝜑𝑃 ∈ Fin)
12 fsumvma.2 . . . . 5 (𝜑𝐴 ∈ Fin)
1312adantr 480 . . . 4 ((𝜑𝑝𝑃) → 𝐴 ∈ Fin)
14 fsumvma.5 . . . . . . . . 9 (𝜑 → ((𝑝𝑃𝑘𝐾) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴)))
1514biimpd 218 . . . . . . . 8 (𝜑 → ((𝑝𝑃𝑘𝐾) → ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴)))
1615impl 648 . . . . . . 7 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴))
1716simprd 478 . . . . . 6 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → (𝑝𝑘) ∈ 𝐴)
1817ex 449 . . . . 5 ((𝜑𝑝𝑃) → (𝑘𝐾 → (𝑝𝑘) ∈ 𝐴))
1916simpld 474 . . . . . . . . 9 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
2019simpld 474 . . . . . . . 8 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → 𝑝 ∈ ℙ)
2120adantrr 749 . . . . . . 7 (((𝜑𝑝𝑃) ∧ (𝑘𝐾𝑧𝐾)) → 𝑝 ∈ ℙ)
2219simprd 478 . . . . . . . 8 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → 𝑘 ∈ ℕ)
2322adantrr 749 . . . . . . 7 (((𝜑𝑝𝑃) ∧ (𝑘𝐾𝑧𝐾)) → 𝑘 ∈ ℕ)
2422ex 449 . . . . . . . . . 10 ((𝜑𝑝𝑃) → (𝑘𝐾𝑘 ∈ ℕ))
2524ssrdv 3574 . . . . . . . . 9 ((𝜑𝑝𝑃) → 𝐾 ⊆ ℕ)
2625sselda 3568 . . . . . . . 8 (((𝜑𝑝𝑃) ∧ 𝑧𝐾) → 𝑧 ∈ ℕ)
2726adantrl 748 . . . . . . 7 (((𝜑𝑝𝑃) ∧ (𝑘𝐾𝑧𝐾)) → 𝑧 ∈ ℕ)
28 eqid 2610 . . . . . . . 8 𝑝 = 𝑝
29 prmexpb 15268 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑝𝑘) = (𝑝𝑧) ↔ (𝑝 = 𝑝𝑘 = 𝑧)))
3029baibd 946 . . . . . . . 8 ((((𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ)) ∧ 𝑝 = 𝑝) → ((𝑝𝑘) = (𝑝𝑧) ↔ 𝑘 = 𝑧))
3128, 30mpan2 703 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑝𝑘) = (𝑝𝑧) ↔ 𝑘 = 𝑧))
3221, 21, 23, 27, 31syl22anc 1319 . . . . . 6 (((𝜑𝑝𝑃) ∧ (𝑘𝐾𝑧𝐾)) → ((𝑝𝑘) = (𝑝𝑧) ↔ 𝑘 = 𝑧))
3332ex 449 . . . . 5 ((𝜑𝑝𝑃) → ((𝑘𝐾𝑧𝐾) → ((𝑝𝑘) = (𝑝𝑧) ↔ 𝑘 = 𝑧)))
3418, 33dom2lem 7881 . . . 4 ((𝜑𝑝𝑃) → (𝑘𝐾 ↦ (𝑝𝑘)):𝐾1-1𝐴)
35 f1fi 8136 . . . 4 ((𝐴 ∈ Fin ∧ (𝑘𝐾 ↦ (𝑝𝑘)):𝐾1-1𝐴) → 𝐾 ∈ Fin)
3613, 34, 35syl2anc 691 . . 3 ((𝜑𝑝𝑃) → 𝐾 ∈ Fin)
3714simplbda 652 . . . 4 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → (𝑝𝑘) ∈ 𝐴)
38 fsumvma.6 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
3938ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℂ)
4039adantr 480 . . . 4 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → ∀𝑥𝐴 𝐵 ∈ ℂ)
418eleq1d 2672 . . . . 5 (𝑥 = (𝑝𝑘) → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
4241rspcv 3278 . . . 4 ((𝑝𝑘) ∈ 𝐴 → (∀𝑥𝐴 𝐵 ∈ ℂ → 𝐶 ∈ ℂ))
4337, 40, 42sylc 63 . . 3 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → 𝐶 ∈ ℂ)
4410, 11, 36, 43fsum2d 14344 . 2 (𝜑 → Σ𝑝𝑃 Σ𝑘𝐾 𝐶 = Σ𝑧 𝑝𝑃 ({𝑝} × 𝐾)(↑‘𝑧) / 𝑥𝐵)
45 nfcv 2751 . . . 4 𝑦𝐵
46 nfcsb1v 3515 . . . 4 𝑥𝑦 / 𝑥𝐵
47 csbeq1a 3508 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
4845, 46, 47cbvsumi 14275 . . 3 Σ𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝐵 = Σ𝑦 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝑦 / 𝑥𝐵
49 csbeq1 3502 . . . 4 (𝑦 = (↑‘𝑧) → 𝑦 / 𝑥𝐵 = (↑‘𝑧) / 𝑥𝐵)
50 snfi 7923 . . . . . . 7 {𝑝} ∈ Fin
51 xpfi 8116 . . . . . . 7 (({𝑝} ∈ Fin ∧ 𝐾 ∈ Fin) → ({𝑝} × 𝐾) ∈ Fin)
5250, 36, 51sylancr 694 . . . . . 6 ((𝜑𝑝𝑃) → ({𝑝} × 𝐾) ∈ Fin)
5352ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑝𝑃 ({𝑝} × 𝐾) ∈ Fin)
54 iunfi 8137 . . . . 5 ((𝑃 ∈ Fin ∧ ∀𝑝𝑃 ({𝑝} × 𝐾) ∈ Fin) → 𝑝𝑃 ({𝑝} × 𝐾) ∈ Fin)
5511, 53, 54syl2anc 691 . . . 4 (𝜑 𝑝𝑃 ({𝑝} × 𝐾) ∈ Fin)
56 fvex 6113 . . . . . . 7 (↑‘𝑎) ∈ V
57562a1i 12 . . . . . 6 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) → (↑‘𝑎) ∈ V))
58 eliunxp 5181 . . . . . . . . 9 (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↔ ∃𝑝𝑘(𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)))
5914simprbda 651 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
60 opelxp 5070 . . . . . . . . . . . . . 14 (⟨𝑝, 𝑘⟩ ∈ (ℙ × ℕ) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
6159, 60sylibr 223 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → ⟨𝑝, 𝑘⟩ ∈ (ℙ × ℕ))
62 eleq1 2676 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑝, 𝑘⟩ → (𝑎 ∈ (ℙ × ℕ) ↔ ⟨𝑝, 𝑘⟩ ∈ (ℙ × ℕ)))
6361, 62syl5ibrcom 236 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → (𝑎 = ⟨𝑝, 𝑘⟩ → 𝑎 ∈ (ℙ × ℕ)))
6463impancom 455 . . . . . . . . . . 11 ((𝜑𝑎 = ⟨𝑝, 𝑘⟩) → ((𝑝𝑃𝑘𝐾) → 𝑎 ∈ (ℙ × ℕ)))
6564expimpd 627 . . . . . . . . . 10 (𝜑 → ((𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)) → 𝑎 ∈ (ℙ × ℕ)))
6665exlimdvv 1849 . . . . . . . . 9 (𝜑 → (∃𝑝𝑘(𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)) → 𝑎 ∈ (ℙ × ℕ)))
6758, 66syl5bi 231 . . . . . . . 8 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) → 𝑎 ∈ (ℙ × ℕ)))
6867ssrdv 3574 . . . . . . . . 9 (𝜑 𝑝𝑃 ({𝑝} × 𝐾) ⊆ (ℙ × ℕ))
6968sseld 3567 . . . . . . . 8 (𝜑 → (𝑏 𝑝𝑃 ({𝑝} × 𝐾) → 𝑏 ∈ (ℙ × ℕ)))
7067, 69anim12d 584 . . . . . . 7 (𝜑 → ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ∧ 𝑏 𝑝𝑃 ({𝑝} × 𝐾)) → (𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ))))
71 1st2nd2 7096 . . . . . . . . . . 11 (𝑎 ∈ (ℙ × ℕ) → 𝑎 = ⟨(1st𝑎), (2nd𝑎)⟩)
7271fveq2d 6107 . . . . . . . . . 10 (𝑎 ∈ (ℙ × ℕ) → (↑‘𝑎) = (↑‘⟨(1st𝑎), (2nd𝑎)⟩))
73 df-ov 6552 . . . . . . . . . 10 ((1st𝑎)↑(2nd𝑎)) = (↑‘⟨(1st𝑎), (2nd𝑎)⟩)
7472, 73syl6eqr 2662 . . . . . . . . 9 (𝑎 ∈ (ℙ × ℕ) → (↑‘𝑎) = ((1st𝑎)↑(2nd𝑎)))
75 1st2nd2 7096 . . . . . . . . . . 11 (𝑏 ∈ (ℙ × ℕ) → 𝑏 = ⟨(1st𝑏), (2nd𝑏)⟩)
7675fveq2d 6107 . . . . . . . . . 10 (𝑏 ∈ (ℙ × ℕ) → (↑‘𝑏) = (↑‘⟨(1st𝑏), (2nd𝑏)⟩))
77 df-ov 6552 . . . . . . . . . 10 ((1st𝑏)↑(2nd𝑏)) = (↑‘⟨(1st𝑏), (2nd𝑏)⟩)
7876, 77syl6eqr 2662 . . . . . . . . 9 (𝑏 ∈ (ℙ × ℕ) → (↑‘𝑏) = ((1st𝑏)↑(2nd𝑏)))
7974, 78eqeqan12d 2626 . . . . . . . 8 ((𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ)) → ((↑‘𝑎) = (↑‘𝑏) ↔ ((1st𝑎)↑(2nd𝑎)) = ((1st𝑏)↑(2nd𝑏))))
80 xp1st 7089 . . . . . . . . . 10 (𝑎 ∈ (ℙ × ℕ) → (1st𝑎) ∈ ℙ)
81 xp2nd 7090 . . . . . . . . . 10 (𝑎 ∈ (ℙ × ℕ) → (2nd𝑎) ∈ ℕ)
8280, 81jca 553 . . . . . . . . 9 (𝑎 ∈ (ℙ × ℕ) → ((1st𝑎) ∈ ℙ ∧ (2nd𝑎) ∈ ℕ))
83 xp1st 7089 . . . . . . . . . 10 (𝑏 ∈ (ℙ × ℕ) → (1st𝑏) ∈ ℙ)
84 xp2nd 7090 . . . . . . . . . 10 (𝑏 ∈ (ℙ × ℕ) → (2nd𝑏) ∈ ℕ)
8583, 84jca 553 . . . . . . . . 9 (𝑏 ∈ (ℙ × ℕ) → ((1st𝑏) ∈ ℙ ∧ (2nd𝑏) ∈ ℕ))
86 prmexpb 15268 . . . . . . . . . 10 ((((1st𝑎) ∈ ℙ ∧ (1st𝑏) ∈ ℙ) ∧ ((2nd𝑎) ∈ ℕ ∧ (2nd𝑏) ∈ ℕ)) → (((1st𝑎)↑(2nd𝑎)) = ((1st𝑏)↑(2nd𝑏)) ↔ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) = (2nd𝑏))))
8786an4s 865 . . . . . . . . 9 ((((1st𝑎) ∈ ℙ ∧ (2nd𝑎) ∈ ℕ) ∧ ((1st𝑏) ∈ ℙ ∧ (2nd𝑏) ∈ ℕ)) → (((1st𝑎)↑(2nd𝑎)) = ((1st𝑏)↑(2nd𝑏)) ↔ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) = (2nd𝑏))))
8882, 85, 87syl2an 493 . . . . . . . 8 ((𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ)) → (((1st𝑎)↑(2nd𝑎)) = ((1st𝑏)↑(2nd𝑏)) ↔ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) = (2nd𝑏))))
89 xpopth 7098 . . . . . . . 8 ((𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ)) → (((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) = (2nd𝑏)) ↔ 𝑎 = 𝑏))
9079, 88, 893bitrd 293 . . . . . . 7 ((𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ)) → ((↑‘𝑎) = (↑‘𝑏) ↔ 𝑎 = 𝑏))
9170, 90syl6 34 . . . . . 6 (𝜑 → ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ∧ 𝑏 𝑝𝑃 ({𝑝} × 𝐾)) → ((↑‘𝑎) = (↑‘𝑏) ↔ 𝑎 = 𝑏)))
9257, 91dom2lem 7881 . . . . 5 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)–1-1→V)
93 f1f1orn 6061 . . . . 5 ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)–1-1→V → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)–1-1-onto→ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))
9492, 93syl 17 . . . 4 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)–1-1-onto→ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))
95 fveq2 6103 . . . . . 6 (𝑎 = 𝑧 → (↑‘𝑎) = (↑‘𝑧))
96 eqid 2610 . . . . . 6 (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) = (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))
9795, 96, 1fvmpt 6191 . . . . 5 (𝑧 𝑝𝑃 ({𝑝} × 𝐾) → ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))‘𝑧) = (↑‘𝑧))
9897adantl 481 . . . 4 ((𝜑𝑧 𝑝𝑃 ({𝑝} × 𝐾)) → ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))‘𝑧) = (↑‘𝑧))
99 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨𝑝, 𝑘⟩ → (↑‘𝑎) = (↑‘⟨𝑝, 𝑘⟩))
10099, 4syl6eqr 2662 . . . . . . . . . . . . . . 15 (𝑎 = ⟨𝑝, 𝑘⟩ → (↑‘𝑎) = (𝑝𝑘))
101100eleq1d 2672 . . . . . . . . . . . . . 14 (𝑎 = ⟨𝑝, 𝑘⟩ → ((↑‘𝑎) ∈ 𝐴 ↔ (𝑝𝑘) ∈ 𝐴))
10237, 101syl5ibrcom 236 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → (𝑎 = ⟨𝑝, 𝑘⟩ → (↑‘𝑎) ∈ 𝐴))
103102impancom 455 . . . . . . . . . . . 12 ((𝜑𝑎 = ⟨𝑝, 𝑘⟩) → ((𝑝𝑃𝑘𝐾) → (↑‘𝑎) ∈ 𝐴))
104103expimpd 627 . . . . . . . . . . 11 (𝜑 → ((𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)) → (↑‘𝑎) ∈ 𝐴))
105104exlimdvv 1849 . . . . . . . . . 10 (𝜑 → (∃𝑝𝑘(𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)) → (↑‘𝑎) ∈ 𝐴))
10658, 105syl5bi 231 . . . . . . . . 9 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) → (↑‘𝑎) ∈ 𝐴))
107106imp 444 . . . . . . . 8 ((𝜑𝑎 𝑝𝑃 ({𝑝} × 𝐾)) → (↑‘𝑎) ∈ 𝐴)
108107, 96fmptd 6292 . . . . . . 7 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)⟶𝐴)
109 frn 5966 . . . . . . 7 ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)⟶𝐴 → ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ⊆ 𝐴)
110108, 109syl 17 . . . . . 6 (𝜑 → ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ⊆ 𝐴)
111110sselda 3568 . . . . 5 ((𝜑𝑦 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝑦𝐴)
11246nfel1 2765 . . . . . . 7 𝑥𝑦 / 𝑥𝐵 ∈ ℂ
11347eleq1d 2672 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 ∈ ℂ ↔ 𝑦 / 𝑥𝐵 ∈ ℂ))
114112, 113rspc 3276 . . . . . 6 (𝑦𝐴 → (∀𝑥𝐴 𝐵 ∈ ℂ → 𝑦 / 𝑥𝐵 ∈ ℂ))
11539, 114mpan9 485 . . . . 5 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ ℂ)
116111, 115syldan 486 . . . 4 ((𝜑𝑦 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝑦 / 𝑥𝐵 ∈ ℂ)
11749, 55, 94, 98, 116fsumf1o 14301 . . 3 (𝜑 → Σ𝑦 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝑦 / 𝑥𝐵 = Σ𝑧 𝑝𝑃 ({𝑝} × 𝐾)(↑‘𝑧) / 𝑥𝐵)
11848, 117syl5eq 2656 . 2 (𝜑 → Σ𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝐵 = Σ𝑧 𝑝𝑃 ({𝑝} × 𝐾)(↑‘𝑧) / 𝑥𝐵)
119110sselda 3568 . . . 4 ((𝜑𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝑥𝐴)
120119, 38syldan 486 . . 3 ((𝜑𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝐵 ∈ ℂ)
121 eldif 3550 . . . . 5 (𝑥 ∈ (𝐴 ∖ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))))
12296, 56elrnmpti 5297 . . . . . . . . . 10 (𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ↔ ∃𝑎 𝑝𝑃 ({𝑝} × 𝐾)𝑥 = (↑‘𝑎))
123100eqeq2d 2620 . . . . . . . . . . 11 (𝑎 = ⟨𝑝, 𝑘⟩ → (𝑥 = (↑‘𝑎) ↔ 𝑥 = (𝑝𝑘)))
124123rexiunxp 5184 . . . . . . . . . 10 (∃𝑎 𝑝𝑃 ({𝑝} × 𝐾)𝑥 = (↑‘𝑎) ↔ ∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘))
125122, 124bitri 263 . . . . . . . . 9 (𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ↔ ∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘))
126 simpr 476 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑥 = (𝑝𝑘)) → 𝑥 = (𝑝𝑘))
127 simplr 788 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑥 = (𝑝𝑘)) → 𝑥𝐴)
128126, 127eqeltrrd 2689 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑥 = (𝑝𝑘)) → (𝑝𝑘) ∈ 𝐴)
12914rbaibd 947 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝑘) ∈ 𝐴) → ((𝑝𝑃𝑘𝐾) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
130129adantlr 747 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ (𝑝𝑘) ∈ 𝐴) → ((𝑝𝑃𝑘𝐾) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
131128, 130syldan 486 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑥 = (𝑝𝑘)) → ((𝑝𝑃𝑘𝐾) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
132131pm5.32da 671 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ((𝑥 = (𝑝𝑘) ∧ (𝑝𝑃𝑘𝐾)) ↔ (𝑥 = (𝑝𝑘) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))))
133 ancom 465 . . . . . . . . . . . . 13 (((𝑝𝑃𝑘𝐾) ∧ 𝑥 = (𝑝𝑘)) ↔ (𝑥 = (𝑝𝑘) ∧ (𝑝𝑃𝑘𝐾)))
134 ancom 465 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝𝑘)) ↔ (𝑥 = (𝑝𝑘) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
135132, 133, 1343bitr4g 302 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (((𝑝𝑃𝑘𝐾) ∧ 𝑥 = (𝑝𝑘)) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝𝑘))))
1361352exbidv 1839 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (∃𝑝𝑘((𝑝𝑃𝑘𝐾) ∧ 𝑥 = (𝑝𝑘)) ↔ ∃𝑝𝑘((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝𝑘))))
137 r2ex 3043 . . . . . . . . . . 11 (∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘) ↔ ∃𝑝𝑘((𝑝𝑃𝑘𝐾) ∧ 𝑥 = (𝑝𝑘)))
138 r2ex 3043 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝𝑘) ↔ ∃𝑝𝑘((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝𝑘)))
139136, 137, 1383bitr4g 302 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘) ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝𝑘)))
140 fsumvma.3 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℕ)
141140sselda 3568 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥 ∈ ℕ)
142 isppw2 24641 . . . . . . . . . . 11 (𝑥 ∈ ℕ → ((Λ‘𝑥) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝𝑘)))
143141, 142syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((Λ‘𝑥) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝𝑘)))
144139, 143bitr4d 270 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘) ↔ (Λ‘𝑥) ≠ 0))
145125, 144syl5bb 271 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ↔ (Λ‘𝑥) ≠ 0))
146145necon2bbid 2825 . . . . . . 7 ((𝜑𝑥𝐴) → ((Λ‘𝑥) = 0 ↔ ¬ 𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))))
147146pm5.32da 671 . . . . . 6 (𝜑 → ((𝑥𝐴 ∧ (Λ‘𝑥) = 0) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))))
148 fsumvma.7 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (Λ‘𝑥) = 0)) → 𝐵 = 0)
149148ex 449 . . . . . 6 (𝜑 → ((𝑥𝐴 ∧ (Λ‘𝑥) = 0) → 𝐵 = 0))
150147, 149sylbird 249 . . . . 5 (𝜑 → ((𝑥𝐴 ∧ ¬ 𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝐵 = 0))
151121, 150syl5bi 231 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∖ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝐵 = 0))
152151imp 444 . . 3 ((𝜑𝑥 ∈ (𝐴 ∖ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))) → 𝐵 = 0)
153110, 120, 152, 12fsumss 14303 . 2 (𝜑 → Σ𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝐵 = Σ𝑥𝐴 𝐵)
15444, 118, 1533eqtr2rd 2651 1 (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑝𝑃 Σ𝑘𝐾 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  csb 3499  cdif 3537  wss 3540  {csn 4125  cop 4131   ciun 4455  cmpt 4643   × cxp 5036  ran crn 5039  wf 5800  1-1wf1 5801  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  Fincfn 7841  cc 9813  0cc0 9815  cn 10897  cexp 12722  Σcsu 14264  cprime 15223  Λcvma 24618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-vma 24624
This theorem is referenced by:  fsumvma2  24739  vmasum  24741
  Copyright terms: Public domain W3C validator