MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dom2lem Structured version   Visualization version   GIF version

Theorem dom2lem 7881
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.)
Hypotheses
Ref Expression
dom2d.1 (𝜑 → (𝑥𝐴𝐶𝐵))
dom2d.2 (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
Assertion
Ref Expression
dom2lem (𝜑 → (𝑥𝐴𝐶):𝐴1-1𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem dom2lem
StepHypRef Expression
1 dom2d.1 . . . 4 (𝜑 → (𝑥𝐴𝐶𝐵))
21ralrimiv 2948 . . 3 (𝜑 → ∀𝑥𝐴 𝐶𝐵)
3 eqid 2610 . . . 4 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
43fmpt 6289 . . 3 (∀𝑥𝐴 𝐶𝐵 ↔ (𝑥𝐴𝐶):𝐴𝐵)
52, 4sylib 207 . 2 (𝜑 → (𝑥𝐴𝐶):𝐴𝐵)
61imp 444 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶𝐵)
73fvmpt2 6200 . . . . . . . 8 ((𝑥𝐴𝐶𝐵) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
87adantll 746 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝐶𝐵) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
96, 8mpdan 699 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
109adantrr 749 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
11 nfv 1830 . . . . . . . 8 𝑥(𝜑𝑦𝐴)
12 nffvmpt1 6111 . . . . . . . . 9 𝑥((𝑥𝐴𝐶)‘𝑦)
1312nfeq1 2764 . . . . . . . 8 𝑥((𝑥𝐴𝐶)‘𝑦) = 𝐷
1411, 13nfim 1813 . . . . . . 7 𝑥((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑦) = 𝐷)
15 eleq1 2676 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1615anbi2d 736 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
1716imbi1d 330 . . . . . . . 8 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶) ↔ ((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)))
1815anbi1d 737 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥𝐴𝑦𝐴) ↔ (𝑦𝐴𝑦𝐴)))
19 anidm 674 . . . . . . . . . . . 12 ((𝑦𝐴𝑦𝐴) ↔ 𝑦𝐴)
2018, 19syl6bb 275 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑥𝐴𝑦𝐴) ↔ 𝑦𝐴))
2120anbi2d 736 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ↔ (𝜑𝑦𝐴)))
22 fveq2 6103 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦))
2322adantr 480 . . . . . . . . . . . 12 ((𝑥 = 𝑦 ∧ (𝜑 ∧ (𝑥𝐴𝑦𝐴))) → ((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦))
24 dom2d.2 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
2524imp 444 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝐶 = 𝐷𝑥 = 𝑦))
2625biimparc 503 . . . . . . . . . . . 12 ((𝑥 = 𝑦 ∧ (𝜑 ∧ (𝑥𝐴𝑦𝐴))) → 𝐶 = 𝐷)
2723, 26eqeq12d 2625 . . . . . . . . . . 11 ((𝑥 = 𝑦 ∧ (𝜑 ∧ (𝑥𝐴𝑦𝐴))) → (((𝑥𝐴𝐶)‘𝑥) = 𝐶 ↔ ((𝑥𝐴𝐶)‘𝑦) = 𝐷))
2827ex 449 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (((𝑥𝐴𝐶)‘𝑥) = 𝐶 ↔ ((𝑥𝐴𝐶)‘𝑦) = 𝐷)))
2921, 28sylbird 249 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝜑𝑦𝐴) → (((𝑥𝐴𝐶)‘𝑥) = 𝐶 ↔ ((𝑥𝐴𝐶)‘𝑦) = 𝐷)))
3029pm5.74d 261 . . . . . . . 8 (𝑥 = 𝑦 → (((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶) ↔ ((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑦) = 𝐷)))
3117, 30bitrd 267 . . . . . . 7 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶) ↔ ((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑦) = 𝐷)))
3214, 31, 9chvar 2250 . . . . . 6 ((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑦) = 𝐷)
3332adantrl 748 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝐴𝐶)‘𝑦) = 𝐷)
3410, 33eqeq12d 2625 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦) ↔ 𝐶 = 𝐷))
3525biimpd 218 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝐶 = 𝐷𝑥 = 𝑦))
3634, 35sylbid 229 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦) → 𝑥 = 𝑦))
3736ralrimivva 2954 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐴 (((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦) → 𝑥 = 𝑦))
38 nfmpt1 4675 . . 3 𝑥(𝑥𝐴𝐶)
39 nfcv 2751 . . 3 𝑦(𝑥𝐴𝐶)
4038, 39dff13f 6417 . 2 ((𝑥𝐴𝐶):𝐴1-1𝐵 ↔ ((𝑥𝐴𝐶):𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦) → 𝑥 = 𝑦)))
415, 37, 40sylanbrc 695 1 (𝜑 → (𝑥𝐴𝐶):𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  cmpt 4643  wf 5800  1-1wf1 5801  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fv 5812
This theorem is referenced by:  dom2d  7882  dom3d  7883  ixpfi2  8147  infxpenc2lem1  8725  dfac12lem2  8849  4sqlem11  15497  odf1o1  17810  odf1o2  17811  dis2ndc  21073  hauspwpwf1  21601  itg1addlem4  23272  basellem3  24609  fsumvma  24738  dchrisum0fno1  25000
  Copyright terms: Public domain W3C validator