MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumvma Structured version   Unicode version

Theorem fsumvma 22574
Description: Rewrite a sum over the von Mangoldt function as a sum over prime powers. (Contributed by Mario Carneiro, 15-Apr-2016.)
Hypotheses
Ref Expression
fsumvma.1  |-  ( x  =  ( p ^
k )  ->  B  =  C )
fsumvma.2  |-  ( ph  ->  A  e.  Fin )
fsumvma.3  |-  ( ph  ->  A  C_  NN )
fsumvma.4  |-  ( ph  ->  P  e.  Fin )
fsumvma.5  |-  ( ph  ->  ( ( p  e.  P  /\  k  e.  K )  <->  ( (
p  e.  Prime  /\  k  e.  NN )  /\  (
p ^ k )  e.  A ) ) )
fsumvma.6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
fsumvma.7  |-  ( (
ph  /\  ( x  e.  A  /\  (Λ `  x )  =  0 ) )  ->  B  =  0 )
Assertion
Ref Expression
fsumvma  |-  ( ph  -> 
sum_ x  e.  A  B  =  sum_ p  e.  P  sum_ k  e.  K  C )
Distinct variable groups:    k, p, x, A    x, C    k, K, x    ph, k, p, x    B, k, p    P, k, p, x
Allowed substitution hints:    B( x)    C( k, p)    K( p)

Proof of Theorem fsumvma
Dummy variables  a 
z  b  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5722 . . . . 5  |-  ( ^ `  z )  e.  _V
21a1i 11 . . . 4  |-  ( z  =  <. p ,  k
>.  ->  ( ^ `  z )  e.  _V )
3 fveq2 5712 . . . . . . . 8  |-  ( z  =  <. p ,  k
>.  ->  ( ^ `  z )  =  ( ^ `  <. p ,  k >. )
)
4 df-ov 6115 . . . . . . . 8  |-  ( p ^ k )  =  ( ^ `  <. p ,  k >. )
53, 4syl6eqr 2493 . . . . . . 7  |-  ( z  =  <. p ,  k
>.  ->  ( ^ `  z )  =  ( p ^ k ) )
65eqeq2d 2454 . . . . . 6  |-  ( z  =  <. p ,  k
>.  ->  ( x  =  ( ^ `  z
)  <->  x  =  (
p ^ k ) ) )
76biimpa 484 . . . . 5  |-  ( ( z  =  <. p ,  k >.  /\  x  =  ( ^ `  z ) )  ->  x  =  ( p ^ k ) )
8 fsumvma.1 . . . . 5  |-  ( x  =  ( p ^
k )  ->  B  =  C )
97, 8syl 16 . . . 4  |-  ( ( z  =  <. p ,  k >.  /\  x  =  ( ^ `  z ) )  ->  B  =  C )
102, 9csbied 3335 . . 3  |-  ( z  =  <. p ,  k
>.  ->  [_ ( ^ `  z )  /  x ]_ B  =  C
)
11 fsumvma.4 . . 3  |-  ( ph  ->  P  e.  Fin )
12 fsumvma.2 . . . . 5  |-  ( ph  ->  A  e.  Fin )
1312adantr 465 . . . 4  |-  ( (
ph  /\  p  e.  P )  ->  A  e.  Fin )
14 fsumvma.5 . . . . . . . . 9  |-  ( ph  ->  ( ( p  e.  P  /\  k  e.  K )  <->  ( (
p  e.  Prime  /\  k  e.  NN )  /\  (
p ^ k )  e.  A ) ) )
1514biimpd 207 . . . . . . . 8  |-  ( ph  ->  ( ( p  e.  P  /\  k  e.  K )  ->  (
( p  e.  Prime  /\  k  e.  NN )  /\  ( p ^
k )  e.  A
) ) )
1615impl 620 . . . . . . 7  |-  ( ( ( ph  /\  p  e.  P )  /\  k  e.  K )  ->  (
( p  e.  Prime  /\  k  e.  NN )  /\  ( p ^
k )  e.  A
) )
1716simprd 463 . . . . . 6  |-  ( ( ( ph  /\  p  e.  P )  /\  k  e.  K )  ->  (
p ^ k )  e.  A )
1817ex 434 . . . . 5  |-  ( (
ph  /\  p  e.  P )  ->  (
k  e.  K  -> 
( p ^ k
)  e.  A ) )
1916simpld 459 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  P )  /\  k  e.  K )  ->  (
p  e.  Prime  /\  k  e.  NN ) )
2019simpld 459 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  P )  /\  k  e.  K )  ->  p  e.  Prime )
2120adantrr 716 . . . . . . 7  |-  ( ( ( ph  /\  p  e.  P )  /\  (
k  e.  K  /\  z  e.  K )
)  ->  p  e.  Prime )
2219simprd 463 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  P )  /\  k  e.  K )  ->  k  e.  NN )
2322adantrr 716 . . . . . . 7  |-  ( ( ( ph  /\  p  e.  P )  /\  (
k  e.  K  /\  z  e.  K )
)  ->  k  e.  NN )
2422ex 434 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  P )  ->  (
k  e.  K  -> 
k  e.  NN ) )
2524ssrdv 3383 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  P )  ->  K  C_  NN )
2625sselda 3377 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  P )  /\  z  e.  K )  ->  z  e.  NN )
2726adantrl 715 . . . . . . 7  |-  ( ( ( ph  /\  p  e.  P )  /\  (
k  e.  K  /\  z  e.  K )
)  ->  z  e.  NN )
28 eqid 2443 . . . . . . . 8  |-  p  =  p
29 prmexpb 13824 . . . . . . . . 9  |-  ( ( ( p  e.  Prime  /\  p  e.  Prime )  /\  ( k  e.  NN  /\  z  e.  NN ) )  ->  ( (
p ^ k )  =  ( p ^
z )  <->  ( p  =  p  /\  k  =  z ) ) )
3029baibd 900 . . . . . . . 8  |-  ( ( ( ( p  e. 
Prime  /\  p  e.  Prime )  /\  ( k  e.  NN  /\  z  e.  NN ) )  /\  p  =  p )  ->  ( ( p ^
k )  =  ( p ^ z )  <-> 
k  =  z ) )
3128, 30mpan2 671 . . . . . . 7  |-  ( ( ( p  e.  Prime  /\  p  e.  Prime )  /\  ( k  e.  NN  /\  z  e.  NN ) )  ->  ( (
p ^ k )  =  ( p ^
z )  <->  k  =  z ) )
3221, 21, 23, 27, 31syl22anc 1219 . . . . . 6  |-  ( ( ( ph  /\  p  e.  P )  /\  (
k  e.  K  /\  z  e.  K )
)  ->  ( (
p ^ k )  =  ( p ^
z )  <->  k  =  z ) )
3332ex 434 . . . . 5  |-  ( (
ph  /\  p  e.  P )  ->  (
( k  e.  K  /\  z  e.  K
)  ->  ( (
p ^ k )  =  ( p ^
z )  <->  k  =  z ) ) )
3418, 33dom2lem 7370 . . . 4  |-  ( (
ph  /\  p  e.  P )  ->  (
k  e.  K  |->  ( p ^ k ) ) : K -1-1-> A
)
35 f1fi 7619 . . . 4  |-  ( ( A  e.  Fin  /\  ( k  e.  K  |->  ( p ^ k
) ) : K -1-1-> A )  ->  K  e.  Fin )
3613, 34, 35syl2anc 661 . . 3  |-  ( (
ph  /\  p  e.  P )  ->  K  e.  Fin )
3714simplbda 624 . . . 4  |-  ( (
ph  /\  ( p  e.  P  /\  k  e.  K ) )  -> 
( p ^ k
)  e.  A )
38 fsumvma.6 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
3938ralrimiva 2820 . . . . 5  |-  ( ph  ->  A. x  e.  A  B  e.  CC )
4039adantr 465 . . . 4  |-  ( (
ph  /\  ( p  e.  P  /\  k  e.  K ) )  ->  A. x  e.  A  B  e.  CC )
418eleq1d 2509 . . . . 5  |-  ( x  =  ( p ^
k )  ->  ( B  e.  CC  <->  C  e.  CC ) )
4241rspcv 3090 . . . 4  |-  ( ( p ^ k )  e.  A  ->  ( A. x  e.  A  B  e.  CC  ->  C  e.  CC ) )
4337, 40, 42sylc 60 . . 3  |-  ( (
ph  /\  ( p  e.  P  /\  k  e.  K ) )  ->  C  e.  CC )
4410, 11, 36, 43fsum2d 13259 . 2  |-  ( ph  -> 
sum_ p  e.  P  sum_ k  e.  K  C  =  sum_ z  e.  U_  p  e.  P  ( { p }  X.  K ) [_ ( ^ `  z )  /  x ]_ B )
45 nfcv 2589 . . . 4  |-  F/_ y B
46 nfcsb1v 3325 . . . 4  |-  F/_ x [_ y  /  x ]_ B
47 csbeq1a 3318 . . . 4  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
4845, 46, 47cbvsumi 13195 . . 3  |-  sum_ x  e.  ran  ( a  e. 
U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) B  =  sum_ y  e.  ran  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) [_ y  /  x ]_ B
49 csbeq1 3312 . . . 4  |-  ( y  =  ( ^ `  z )  ->  [_ y  /  x ]_ B  = 
[_ ( ^ `  z )  /  x ]_ B )
50 snfi 7411 . . . . . . 7  |-  { p }  e.  Fin
51 xpfi 7604 . . . . . . 7  |-  ( ( { p }  e.  Fin  /\  K  e.  Fin )  ->  ( { p }  X.  K )  e. 
Fin )
5250, 36, 51sylancr 663 . . . . . 6  |-  ( (
ph  /\  p  e.  P )  ->  ( { p }  X.  K )  e.  Fin )
5352ralrimiva 2820 . . . . 5  |-  ( ph  ->  A. p  e.  P  ( { p }  X.  K )  e.  Fin )
54 iunfi 7620 . . . . 5  |-  ( ( P  e.  Fin  /\  A. p  e.  P  ( { p }  X.  K )  e.  Fin )  ->  U_ p  e.  P  ( { p }  X.  K )  e.  Fin )
5511, 53, 54syl2anc 661 . . . 4  |-  ( ph  ->  U_ p  e.  P  ( { p }  X.  K )  e.  Fin )
56 fvex 5722 . . . . . . 7  |-  ( ^ `  a )  e.  _V
5756a1ii 27 . . . . . 6  |-  ( ph  ->  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  ->  ( ^ `  a )  e.  _V ) )
58 eliunxp 4998 . . . . . . . . 9  |-  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  <->  E. p E. k ( a  = 
<. p ,  k >.  /\  ( p  e.  P  /\  k  e.  K
) ) )
5914simprbda 623 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( p  e.  P  /\  k  e.  K ) )  -> 
( p  e.  Prime  /\  k  e.  NN ) )
60 opelxp 4890 . . . . . . . . . . . . . 14  |-  ( <.
p ,  k >.  e.  ( Prime  X.  NN ) 
<->  ( p  e.  Prime  /\  k  e.  NN ) )
6159, 60sylibr 212 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( p  e.  P  /\  k  e.  K ) )  ->  <. p ,  k >.  e.  ( Prime  X.  NN ) )
62 eleq1 2503 . . . . . . . . . . . . 13  |-  ( a  =  <. p ,  k
>.  ->  ( a  e.  ( Prime  X.  NN ) 
<-> 
<. p ,  k >.  e.  ( Prime  X.  NN ) ) )
6361, 62syl5ibrcom 222 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( p  e.  P  /\  k  e.  K ) )  -> 
( a  =  <. p ,  k >.  ->  a  e.  ( Prime  X.  NN ) ) )
6463impancom 440 . . . . . . . . . . 11  |-  ( (
ph  /\  a  =  <. p ,  k >.
)  ->  ( (
p  e.  P  /\  k  e.  K )  ->  a  e.  ( Prime  X.  NN ) ) )
6564expimpd 603 . . . . . . . . . 10  |-  ( ph  ->  ( ( a  = 
<. p ,  k >.  /\  ( p  e.  P  /\  k  e.  K
) )  ->  a  e.  ( Prime  X.  NN ) ) )
6665exlimdvv 1691 . . . . . . . . 9  |-  ( ph  ->  ( E. p E. k ( a  = 
<. p ,  k >.  /\  ( p  e.  P  /\  k  e.  K
) )  ->  a  e.  ( Prime  X.  NN ) ) )
6758, 66syl5bi 217 . . . . . . . 8  |-  ( ph  ->  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  ->  a  e.  ( Prime  X.  NN ) ) )
6867ssrdv 3383 . . . . . . . . 9  |-  ( ph  ->  U_ p  e.  P  ( { p }  X.  K )  C_  ( Prime  X.  NN ) )
6968sseld 3376 . . . . . . . 8  |-  ( ph  ->  ( b  e.  U_ p  e.  P  ( { p }  X.  K )  ->  b  e.  ( Prime  X.  NN ) ) )
7067, 69anim12d 563 . . . . . . 7  |-  ( ph  ->  ( ( a  e. 
U_ p  e.  P  ( { p }  X.  K )  /\  b  e.  U_ p  e.  P  ( { p }  X.  K ) )  -> 
( a  e.  ( Prime  X.  NN )  /\  b  e.  ( Prime  X.  NN ) ) ) )
71 1st2nd2 6634 . . . . . . . . . . 11  |-  ( a  e.  ( Prime  X.  NN )  ->  a  =  <. ( 1st `  a ) ,  ( 2nd `  a
) >. )
7271fveq2d 5716 . . . . . . . . . 10  |-  ( a  e.  ( Prime  X.  NN )  ->  ( ^ `  a )  =  ( ^ `  <. ( 1st `  a ) ,  ( 2nd `  a
) >. ) )
73 df-ov 6115 . . . . . . . . . 10  |-  ( ( 1st `  a ) ^ ( 2nd `  a
) )  =  ( ^ `  <. ( 1st `  a ) ,  ( 2nd `  a
) >. )
7472, 73syl6eqr 2493 . . . . . . . . 9  |-  ( a  e.  ( Prime  X.  NN )  ->  ( ^ `  a )  =  ( ( 1st `  a
) ^ ( 2nd `  a ) ) )
75 1st2nd2 6634 . . . . . . . . . . 11  |-  ( b  e.  ( Prime  X.  NN )  ->  b  =  <. ( 1st `  b ) ,  ( 2nd `  b
) >. )
7675fveq2d 5716 . . . . . . . . . 10  |-  ( b  e.  ( Prime  X.  NN )  ->  ( ^ `  b )  =  ( ^ `  <. ( 1st `  b ) ,  ( 2nd `  b
) >. ) )
77 df-ov 6115 . . . . . . . . . 10  |-  ( ( 1st `  b ) ^ ( 2nd `  b
) )  =  ( ^ `  <. ( 1st `  b ) ,  ( 2nd `  b
) >. )
7876, 77syl6eqr 2493 . . . . . . . . 9  |-  ( b  e.  ( Prime  X.  NN )  ->  ( ^ `  b )  =  ( ( 1st `  b
) ^ ( 2nd `  b ) ) )
7974, 78eqeqan12d 2458 . . . . . . . 8  |-  ( ( a  e.  ( Prime  X.  NN )  /\  b  e.  ( Prime  X.  NN ) )  ->  (
( ^ `  a
)  =  ( ^ `  b )  <->  ( ( 1st `  a ) ^
( 2nd `  a
) )  =  ( ( 1st `  b
) ^ ( 2nd `  b ) ) ) )
80 xp1st 6627 . . . . . . . . . 10  |-  ( a  e.  ( Prime  X.  NN )  ->  ( 1st `  a
)  e.  Prime )
81 xp2nd 6628 . . . . . . . . . 10  |-  ( a  e.  ( Prime  X.  NN )  ->  ( 2nd `  a
)  e.  NN )
8280, 81jca 532 . . . . . . . . 9  |-  ( a  e.  ( Prime  X.  NN )  ->  ( ( 1st `  a )  e.  Prime  /\  ( 2nd `  a
)  e.  NN ) )
83 xp1st 6627 . . . . . . . . . 10  |-  ( b  e.  ( Prime  X.  NN )  ->  ( 1st `  b
)  e.  Prime )
84 xp2nd 6628 . . . . . . . . . 10  |-  ( b  e.  ( Prime  X.  NN )  ->  ( 2nd `  b
)  e.  NN )
8583, 84jca 532 . . . . . . . . 9  |-  ( b  e.  ( Prime  X.  NN )  ->  ( ( 1st `  b )  e.  Prime  /\  ( 2nd `  b
)  e.  NN ) )
86 prmexpb 13824 . . . . . . . . . 10  |-  ( ( ( ( 1st `  a
)  e.  Prime  /\  ( 1st `  b )  e. 
Prime )  /\  (
( 2nd `  a
)  e.  NN  /\  ( 2nd `  b )  e.  NN ) )  ->  ( ( ( 1st `  a ) ^ ( 2nd `  a
) )  =  ( ( 1st `  b
) ^ ( 2nd `  b ) )  <->  ( ( 1st `  a )  =  ( 1st `  b
)  /\  ( 2nd `  a )  =  ( 2nd `  b ) ) ) )
8786an4s 822 . . . . . . . . 9  |-  ( ( ( ( 1st `  a
)  e.  Prime  /\  ( 2nd `  a )  e.  NN )  /\  (
( 1st `  b
)  e.  Prime  /\  ( 2nd `  b )  e.  NN ) )  -> 
( ( ( 1st `  a ) ^ ( 2nd `  a ) )  =  ( ( 1st `  b ) ^ ( 2nd `  b ) )  <-> 
( ( 1st `  a
)  =  ( 1st `  b )  /\  ( 2nd `  a )  =  ( 2nd `  b
) ) ) )
8882, 85, 87syl2an 477 . . . . . . . 8  |-  ( ( a  e.  ( Prime  X.  NN )  /\  b  e.  ( Prime  X.  NN ) )  ->  (
( ( 1st `  a
) ^ ( 2nd `  a ) )  =  ( ( 1st `  b
) ^ ( 2nd `  b ) )  <->  ( ( 1st `  a )  =  ( 1st `  b
)  /\  ( 2nd `  a )  =  ( 2nd `  b ) ) ) )
89 xpopth 6636 . . . . . . . 8  |-  ( ( a  e.  ( Prime  X.  NN )  /\  b  e.  ( Prime  X.  NN ) )  ->  (
( ( 1st `  a
)  =  ( 1st `  b )  /\  ( 2nd `  a )  =  ( 2nd `  b
) )  <->  a  =  b ) )
9079, 88, 893bitrd 279 . . . . . . 7  |-  ( ( a  e.  ( Prime  X.  NN )  /\  b  e.  ( Prime  X.  NN ) )  ->  (
( ^ `  a
)  =  ( ^ `  b )  <->  a  =  b ) )
9170, 90syl6 33 . . . . . 6  |-  ( ph  ->  ( ( a  e. 
U_ p  e.  P  ( { p }  X.  K )  /\  b  e.  U_ p  e.  P  ( { p }  X.  K ) )  -> 
( ( ^ `  a )  =  ( ^ `  b )  <-> 
a  =  b ) ) )
9257, 91dom2lem 7370 . . . . 5  |-  ( ph  ->  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) :
U_ p  e.  P  ( { p }  X.  K ) -1-1-> _V )
93 f1f1orn 5673 . . . . 5  |-  ( ( a  e.  U_ p  e.  P  ( {
p }  X.  K
)  |->  ( ^ `  a ) ) :
U_ p  e.  P  ( { p }  X.  K ) -1-1-> _V  ->  ( a  e.  U_ p  e.  P  ( {
p }  X.  K
)  |->  ( ^ `  a ) ) :
U_ p  e.  P  ( { p }  X.  K ) -1-1-onto-> ran  ( a  e. 
U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) )
9492, 93syl 16 . . . 4  |-  ( ph  ->  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) :
U_ p  e.  P  ( { p }  X.  K ) -1-1-onto-> ran  ( a  e. 
U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) )
95 fveq2 5712 . . . . . 6  |-  ( a  =  z  ->  ( ^ `  a )  =  ( ^ `  z ) )
96 eqid 2443 . . . . . 6  |-  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) )  =  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) )
9795, 96, 1fvmpt 5795 . . . . 5  |-  ( z  e.  U_ p  e.  P  ( { p }  X.  K )  -> 
( ( a  e. 
U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) `  z )  =  ( ^ `  z ) )
9897adantl 466 . . . 4  |-  ( (
ph  /\  z  e.  U_ p  e.  P  ( { p }  X.  K ) )  -> 
( ( a  e. 
U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) `  z )  =  ( ^ `  z ) )
99 fveq2 5712 . . . . . . . . . . . . . . . 16  |-  ( a  =  <. p ,  k
>.  ->  ( ^ `  a )  =  ( ^ `  <. p ,  k >. )
)
10099, 4syl6eqr 2493 . . . . . . . . . . . . . . 15  |-  ( a  =  <. p ,  k
>.  ->  ( ^ `  a )  =  ( p ^ k ) )
101100eleq1d 2509 . . . . . . . . . . . . . 14  |-  ( a  =  <. p ,  k
>.  ->  ( ( ^ `  a )  e.  A  <->  ( p ^ k )  e.  A ) )
10237, 101syl5ibrcom 222 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( p  e.  P  /\  k  e.  K ) )  -> 
( a  =  <. p ,  k >.  ->  ( ^ `  a )  e.  A ) )
103102impancom 440 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  =  <. p ,  k >.
)  ->  ( (
p  e.  P  /\  k  e.  K )  ->  ( ^ `  a
)  e.  A ) )
104103expimpd 603 . . . . . . . . . . 11  |-  ( ph  ->  ( ( a  = 
<. p ,  k >.  /\  ( p  e.  P  /\  k  e.  K
) )  ->  ( ^ `  a )  e.  A ) )
105104exlimdvv 1691 . . . . . . . . . 10  |-  ( ph  ->  ( E. p E. k ( a  = 
<. p ,  k >.  /\  ( p  e.  P  /\  k  e.  K
) )  ->  ( ^ `  a )  e.  A ) )
10658, 105syl5bi 217 . . . . . . . . 9  |-  ( ph  ->  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  ->  ( ^ `  a )  e.  A ) )
107106imp 429 . . . . . . . 8  |-  ( (
ph  /\  a  e.  U_ p  e.  P  ( { p }  X.  K ) )  -> 
( ^ `  a
)  e.  A )
108107, 96fmptd 5888 . . . . . . 7  |-  ( ph  ->  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) :
U_ p  e.  P  ( { p }  X.  K ) --> A )
109 frn 5586 . . . . . . 7  |-  ( ( a  e.  U_ p  e.  P  ( {
p }  X.  K
)  |->  ( ^ `  a ) ) :
U_ p  e.  P  ( { p }  X.  K ) --> A  ->  ran  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) )  C_  A )
110108, 109syl 16 . . . . . 6  |-  ( ph  ->  ran  ( a  e. 
U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) )  C_  A )
111110sselda 3377 . . . . 5  |-  ( (
ph  /\  y  e.  ran  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) )  ->  y  e.  A
)
11246nfel1 2604 . . . . . . 7  |-  F/ x [_ y  /  x ]_ B  e.  CC
11347eleq1d 2509 . . . . . . 7  |-  ( x  =  y  ->  ( B  e.  CC  <->  [_ y  /  x ]_ B  e.  CC ) )
114112, 113rspc 3088 . . . . . 6  |-  ( y  e.  A  ->  ( A. x  e.  A  B  e.  CC  ->  [_ y  /  x ]_ B  e.  CC )
)
11539, 114mpan9 469 . . . . 5  |-  ( (
ph  /\  y  e.  A )  ->  [_ y  /  x ]_ B  e.  CC )
116111, 115syldan 470 . . . 4  |-  ( (
ph  /\  y  e.  ran  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) )  ->  [_ y  /  x ]_ B  e.  CC )
11749, 55, 94, 98, 116fsumf1o 13221 . . 3  |-  ( ph  -> 
sum_ y  e.  ran  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) [_ y  /  x ]_ B  =  sum_ z  e.  U_  p  e.  P  ( { p }  X.  K ) [_ ( ^ `  z )  /  x ]_ B )
11848, 117syl5eq 2487 . 2  |-  ( ph  -> 
sum_ x  e.  ran  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) B  =  sum_ z  e.  U_  p  e.  P  ( { p }  X.  K ) [_ ( ^ `  z )  /  x ]_ B )
119110sselda 3377 . . . 4  |-  ( (
ph  /\  x  e.  ran  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) )  ->  x  e.  A
)
120119, 38syldan 470 . . 3  |-  ( (
ph  /\  x  e.  ran  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) )  ->  B  e.  CC )
121 eldif 3359 . . . . 5  |-  ( x  e.  ( A  \  ran  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) )  <-> 
( x  e.  A  /\  -.  x  e.  ran  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) ) )
12296, 56elrnmpti 5111 . . . . . . . . . 10  |-  ( x  e.  ran  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) )  <->  E. a  e.  U_  p  e.  P  ( { p }  X.  K ) x  =  ( ^ `  a
) )
123100eqeq2d 2454 . . . . . . . . . . 11  |-  ( a  =  <. p ,  k
>.  ->  ( x  =  ( ^ `  a
)  <->  x  =  (
p ^ k ) ) )
124123rexiunxp 5001 . . . . . . . . . 10  |-  ( E. a  e.  U_  p  e.  P  ( {
p }  X.  K
) x  =  ( ^ `  a )  <->  E. p  e.  P  E. k  e.  K  x  =  ( p ^ k ) )
125122, 124bitri 249 . . . . . . . . 9  |-  ( x  e.  ran  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) )  <->  E. p  e.  P  E. k  e.  K  x  =  ( p ^ k ) )
126 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  x  =  ( p ^
k ) )  ->  x  =  ( p ^ k ) )
127 simplr 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  x  =  ( p ^
k ) )  ->  x  e.  A )
128126, 127eqeltrrd 2518 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  A )  /\  x  =  ( p ^
k ) )  -> 
( p ^ k
)  e.  A )
12914rbaibd 901 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( p ^ k )  e.  A )  ->  (
( p  e.  P  /\  k  e.  K
)  <->  ( p  e. 
Prime  /\  k  e.  NN ) ) )
130129adantlr 714 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  A )  /\  (
p ^ k )  e.  A )  -> 
( ( p  e.  P  /\  k  e.  K )  <->  ( p  e.  Prime  /\  k  e.  NN ) ) )
131128, 130syldan 470 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  A )  /\  x  =  ( p ^
k ) )  -> 
( ( p  e.  P  /\  k  e.  K )  <->  ( p  e.  Prime  /\  k  e.  NN ) ) )
132131pm5.32da 641 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  =  ( p ^ k )  /\  ( p  e.  P  /\  k  e.  K ) )  <->  ( x  =  ( p ^
k )  /\  (
p  e.  Prime  /\  k  e.  NN ) ) ) )
133 ancom 450 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  P  /\  k  e.  K
)  /\  x  =  ( p ^ k
) )  <->  ( x  =  ( p ^
k )  /\  (
p  e.  P  /\  k  e.  K )
) )
134 ancom 450 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  Prime  /\  k  e.  NN )  /\  x  =  ( p ^ k ) )  <->  ( x  =  ( p ^ k
)  /\  ( p  e.  Prime  /\  k  e.  NN ) ) )
135132, 133, 1343bitr4g 288 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( p  e.  P  /\  k  e.  K )  /\  x  =  ( p ^
k ) )  <->  ( (
p  e.  Prime  /\  k  e.  NN )  /\  x  =  ( p ^
k ) ) ) )
1361352exbidv 1682 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( E. p E. k ( ( p  e.  P  /\  k  e.  K
)  /\  x  =  ( p ^ k
) )  <->  E. p E. k ( ( p  e.  Prime  /\  k  e.  NN )  /\  x  =  ( p ^
k ) ) ) )
137 r2ex 2774 . . . . . . . . . . 11  |-  ( E. p  e.  P  E. k  e.  K  x  =  ( p ^
k )  <->  E. p E. k ( ( p  e.  P  /\  k  e.  K )  /\  x  =  ( p ^
k ) ) )
138 r2ex 2774 . . . . . . . . . . 11  |-  ( E. p  e.  Prime  E. k  e.  NN  x  =  ( p ^ k )  <->  E. p E. k ( ( p  e.  Prime  /\  k  e.  NN )  /\  x  =  ( p ^ k ) ) )
139136, 137, 1383bitr4g 288 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( E. p  e.  P  E. k  e.  K  x  =  ( p ^ k )  <->  E. p  e.  Prime  E. k  e.  NN  x  =  ( p ^ k ) ) )
140 fsumvma.3 . . . . . . . . . . . 12  |-  ( ph  ->  A  C_  NN )
141140sselda 3377 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  NN )
142 isppw2 22475 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  (
(Λ `  x )  =/=  0  <->  E. p  e.  Prime  E. k  e.  NN  x  =  ( p ^
k ) ) )
143141, 142syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
(Λ `  x )  =/=  0  <->  E. p  e.  Prime  E. k  e.  NN  x  =  ( p ^
k ) ) )
144139, 143bitr4d 256 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( E. p  e.  P  E. k  e.  K  x  =  ( p ^ k )  <->  (Λ `  x
)  =/=  0 ) )
145125, 144syl5bb 257 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
x  e.  ran  (
a  e.  U_ p  e.  P  ( {
p }  X.  K
)  |->  ( ^ `  a ) )  <->  (Λ `  x
)  =/=  0 ) )
146145necon2bbid 2693 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
(Λ `  x )  =  0  <->  -.  x  e.  ran  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) ) )
147146pm5.32da 641 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  /\  (Λ `  x
)  =  0 )  <-> 
( x  e.  A  /\  -.  x  e.  ran  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) ) ) )
148 fsumvma.7 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  /\  (Λ `  x )  =  0 ) )  ->  B  =  0 )
149148ex 434 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  /\  (Λ `  x
)  =  0 )  ->  B  =  0 ) )
150147, 149sylbird 235 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  /\  -.  x  e.  ran  ( a  e. 
U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) )  ->  B  =  0 ) )
151121, 150syl5bi 217 . . . 4  |-  ( ph  ->  ( x  e.  ( A  \  ran  (
a  e.  U_ p  e.  P  ( {
p }  X.  K
)  |->  ( ^ `  a ) ) )  ->  B  =  0 ) )
152151imp 429 . . 3  |-  ( (
ph  /\  x  e.  ( A  \  ran  (
a  e.  U_ p  e.  P  ( {
p }  X.  K
)  |->  ( ^ `  a ) ) ) )  ->  B  = 
0 )
153110, 120, 152, 12fsumss 13223 . 2  |-  ( ph  -> 
sum_ x  e.  ran  ( a  e.  U_ p  e.  P  ( { p }  X.  K )  |->  ( ^ `  a ) ) B  =  sum_ x  e.  A  B )
15444, 118, 1533eqtr2rd 2482 1  |-  ( ph  -> 
sum_ x  e.  A  B  =  sum_ p  e.  P  sum_ k  e.  K  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2620   A.wral 2736   E.wrex 2737   _Vcvv 2993   [_csb 3309    \ cdif 3346    C_ wss 3349   {csn 3898   <.cop 3904   U_ciun 4192    e. cmpt 4371    X. cxp 4859   ran crn 4862   -->wf 5435   -1-1->wf1 5436   -1-1-onto->wf1o 5438   ` cfv 5439  (class class class)co 6112   1stc1st 6596   2ndc2nd 6597   Fincfn 7331   CCcc 9301   0cc0 9303   NNcn 10343   ^cexp 11886   sum_csu 13184   Primecprime 13784  Λcvma 22451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381  ax-addf 9382  ax-mulf 9383
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-iin 4195  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-se 4701  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-of 6341  df-om 6498  df-1st 6598  df-2nd 6599  df-supp 6712  df-recs 6853  df-rdg 6887  df-1o 6941  df-2o 6942  df-oadd 6945  df-er 7122  df-map 7237  df-pm 7238  df-ixp 7285  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-fsupp 7642  df-fi 7682  df-sup 7712  df-oi 7745  df-card 8130  df-cda 8358  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-7 10406  df-8 10407  df-9 10408  df-10 10409  df-n0 10601  df-z 10668  df-dec 10777  df-uz 10883  df-q 10975  df-rp 11013  df-xneg 11110  df-xadd 11111  df-xmul 11112  df-ioo 11325  df-ioc 11326  df-ico 11327  df-icc 11328  df-fz 11459  df-fzo 11570  df-fl 11663  df-mod 11730  df-seq 11828  df-exp 11887  df-fac 12073  df-bc 12100  df-hash 12125  df-shft 12577  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-limsup 12970  df-clim 12987  df-rlim 12988  df-sum 13185  df-ef 13374  df-sin 13376  df-cos 13377  df-pi 13379  df-dvds 13557  df-gcd 13712  df-prm 13785  df-pc 13925  df-struct 14197  df-ndx 14198  df-slot 14199  df-base 14200  df-sets 14201  df-ress 14202  df-plusg 14272  df-mulr 14273  df-starv 14274  df-sca 14275  df-vsca 14276  df-ip 14277  df-tset 14278  df-ple 14279  df-ds 14281  df-unif 14282  df-hom 14283  df-cco 14284  df-rest 14382  df-topn 14383  df-0g 14401  df-gsum 14402  df-topgen 14403  df-pt 14404  df-prds 14407  df-xrs 14461  df-qtop 14466  df-imas 14467  df-xps 14469  df-mre 14545  df-mrc 14546  df-acs 14548  df-mnd 15436  df-submnd 15486  df-mulg 15569  df-cntz 15856  df-cmn 16300  df-psmet 17831  df-xmet 17832  df-met 17833  df-bl 17834  df-mopn 17835  df-fbas 17836  df-fg 17837  df-cnfld 17841  df-top 18525  df-bases 18527  df-topon 18528  df-topsp 18529  df-cld 18645  df-ntr 18646  df-cls 18647  df-nei 18724  df-lp 18762  df-perf 18763  df-cn 18853  df-cnp 18854  df-haus 18941  df-tx 19157  df-hmeo 19350  df-fil 19441  df-fm 19533  df-flim 19534  df-flf 19535  df-xms 19917  df-ms 19918  df-tms 19919  df-cncf 20476  df-limc 21363  df-dv 21364  df-log 22030  df-vma 22457
This theorem is referenced by:  fsumvma2  22575  vmasum  22577
  Copyright terms: Public domain W3C validator