Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  facwordi Structured version   Visualization version   GIF version

Theorem facwordi 12938
 Description: Ordering property of factorial. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
facwordi ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))

Proof of Theorem facwordi
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4587 . . . . . 6 (𝑗 = 0 → (𝑀𝑗𝑀 ≤ 0))
21anbi2d 736 . . . . 5 (𝑗 = 0 → ((𝑀 ∈ ℕ0𝑀𝑗) ↔ (𝑀 ∈ ℕ0𝑀 ≤ 0)))
3 fveq2 6103 . . . . . 6 (𝑗 = 0 → (!‘𝑗) = (!‘0))
43breq2d 4595 . . . . 5 (𝑗 = 0 → ((!‘𝑀) ≤ (!‘𝑗) ↔ (!‘𝑀) ≤ (!‘0)))
52, 4imbi12d 333 . . . 4 (𝑗 = 0 → (((𝑀 ∈ ℕ0𝑀𝑗) → (!‘𝑀) ≤ (!‘𝑗)) ↔ ((𝑀 ∈ ℕ0𝑀 ≤ 0) → (!‘𝑀) ≤ (!‘0))))
6 breq2 4587 . . . . . 6 (𝑗 = 𝑘 → (𝑀𝑗𝑀𝑘))
76anbi2d 736 . . . . 5 (𝑗 = 𝑘 → ((𝑀 ∈ ℕ0𝑀𝑗) ↔ (𝑀 ∈ ℕ0𝑀𝑘)))
8 fveq2 6103 . . . . . 6 (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘))
98breq2d 4595 . . . . 5 (𝑗 = 𝑘 → ((!‘𝑀) ≤ (!‘𝑗) ↔ (!‘𝑀) ≤ (!‘𝑘)))
107, 9imbi12d 333 . . . 4 (𝑗 = 𝑘 → (((𝑀 ∈ ℕ0𝑀𝑗) → (!‘𝑀) ≤ (!‘𝑗)) ↔ ((𝑀 ∈ ℕ0𝑀𝑘) → (!‘𝑀) ≤ (!‘𝑘))))
11 breq2 4587 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝑀𝑗𝑀 ≤ (𝑘 + 1)))
1211anbi2d 736 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑀 ∈ ℕ0𝑀𝑗) ↔ (𝑀 ∈ ℕ0𝑀 ≤ (𝑘 + 1))))
13 fveq2 6103 . . . . . 6 (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1)))
1413breq2d 4595 . . . . 5 (𝑗 = (𝑘 + 1) → ((!‘𝑀) ≤ (!‘𝑗) ↔ (!‘𝑀) ≤ (!‘(𝑘 + 1))))
1512, 14imbi12d 333 . . . 4 (𝑗 = (𝑘 + 1) → (((𝑀 ∈ ℕ0𝑀𝑗) → (!‘𝑀) ≤ (!‘𝑗)) ↔ ((𝑀 ∈ ℕ0𝑀 ≤ (𝑘 + 1)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
16 breq2 4587 . . . . . 6 (𝑗 = 𝑁 → (𝑀𝑗𝑀𝑁))
1716anbi2d 736 . . . . 5 (𝑗 = 𝑁 → ((𝑀 ∈ ℕ0𝑀𝑗) ↔ (𝑀 ∈ ℕ0𝑀𝑁)))
18 fveq2 6103 . . . . . 6 (𝑗 = 𝑁 → (!‘𝑗) = (!‘𝑁))
1918breq2d 4595 . . . . 5 (𝑗 = 𝑁 → ((!‘𝑀) ≤ (!‘𝑗) ↔ (!‘𝑀) ≤ (!‘𝑁)))
2017, 19imbi12d 333 . . . 4 (𝑗 = 𝑁 → (((𝑀 ∈ ℕ0𝑀𝑗) → (!‘𝑀) ≤ (!‘𝑗)) ↔ ((𝑀 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))))
21 nn0le0eq0 11198 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 ≤ 0 ↔ 𝑀 = 0))
2221biimpa 500 . . . . . 6 ((𝑀 ∈ ℕ0𝑀 ≤ 0) → 𝑀 = 0)
2322fveq2d 6107 . . . . 5 ((𝑀 ∈ ℕ0𝑀 ≤ 0) → (!‘𝑀) = (!‘0))
24 fac0 12925 . . . . . . 7 (!‘0) = 1
25 1re 9918 . . . . . . 7 1 ∈ ℝ
2624, 25eqeltri 2684 . . . . . 6 (!‘0) ∈ ℝ
2726leidi 10441 . . . . 5 (!‘0) ≤ (!‘0)
2823, 27syl6eqbr 4622 . . . 4 ((𝑀 ∈ ℕ0𝑀 ≤ 0) → (!‘𝑀) ≤ (!‘0))
29 impexp 461 . . . . 5 (((𝑀 ∈ ℕ0𝑀𝑘) → (!‘𝑀) ≤ (!‘𝑘)) ↔ (𝑀 ∈ ℕ0 → (𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘))))
30 nn0re 11178 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
31 nn0re 11178 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
32 peano2re 10088 . . . . . . . . . . . . 13 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
3331, 32syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℝ)
34 leloe 10003 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → (𝑀 ≤ (𝑘 + 1) ↔ (𝑀 < (𝑘 + 1) ∨ 𝑀 = (𝑘 + 1))))
3530, 33, 34syl2an 493 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 ≤ (𝑘 + 1) ↔ (𝑀 < (𝑘 + 1) ∨ 𝑀 = (𝑘 + 1))))
36 nn0leltp1 11313 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀𝑘𝑀 < (𝑘 + 1)))
37 faccl 12932 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
3837nnred 10912 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℝ)
3937nnnn0d 11228 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ0)
4039nn0ge0d 11231 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → 0 ≤ (!‘𝑘))
41 nn0p1nn 11209 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
4241nnge1d 10940 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → 1 ≤ (𝑘 + 1))
4338, 33, 40, 42lemulge11d 10840 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (!‘𝑘) ≤ ((!‘𝑘) · (𝑘 + 1)))
44 facp1 12927 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
4543, 44breqtrrd 4611 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (!‘𝑘) ≤ (!‘(𝑘 + 1)))
4645adantl 481 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑘) ≤ (!‘(𝑘 + 1)))
47 faccl 12932 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ)
4847nnred 10912 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℝ)
4948adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑀) ∈ ℝ)
5038adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ)
51 peano2nn0 11210 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
52 faccl 12932 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 + 1) ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℕ)
5351, 52syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℕ)
5453nnred 10912 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℝ)
5554adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) ∈ ℝ)
56 letr 10010 . . . . . . . . . . . . . . . . 17 (((!‘𝑀) ∈ ℝ ∧ (!‘𝑘) ∈ ℝ ∧ (!‘(𝑘 + 1)) ∈ ℝ) → (((!‘𝑀) ≤ (!‘𝑘) ∧ (!‘𝑘) ≤ (!‘(𝑘 + 1))) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
5749, 50, 55, 56syl3anc 1318 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (((!‘𝑀) ≤ (!‘𝑘) ∧ (!‘𝑘) ≤ (!‘(𝑘 + 1))) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
5846, 57mpan2d 706 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘𝑀) ≤ (!‘𝑘) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
5958imim2d 55 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (𝑀𝑘 → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
6059com23 84 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀𝑘 → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
6136, 60sylbird 249 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 < (𝑘 + 1) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
62 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑀 = (𝑘 + 1) → (!‘𝑀) = (!‘(𝑘 + 1)))
6348leidd 10473 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (!‘𝑀) ≤ (!‘𝑀))
64 breq2 4587 . . . . . . . . . . . . . . . 16 ((!‘𝑀) = (!‘(𝑘 + 1)) → ((!‘𝑀) ≤ (!‘𝑀) ↔ (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6563, 64syl5ibcom 234 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ0 → ((!‘𝑀) = (!‘(𝑘 + 1)) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6662, 65syl5 33 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → (𝑀 = (𝑘 + 1) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6766adantr 480 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 = (𝑘 + 1) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6867a1dd 48 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 = (𝑘 + 1) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
6961, 68jaod 394 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑀 < (𝑘 + 1) ∨ 𝑀 = (𝑘 + 1)) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
7035, 69sylbid 229 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 ≤ (𝑘 + 1) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
7170ex 449 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (𝑘 ∈ ℕ0 → (𝑀 ≤ (𝑘 + 1) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))))
7271com13 86 . . . . . . . 8 (𝑀 ≤ (𝑘 + 1) → (𝑘 ∈ ℕ0 → (𝑀 ∈ ℕ0 → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))))
7372com4l 90 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑀 ∈ ℕ0 → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (𝑀 ≤ (𝑘 + 1) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))))
7473a2d 29 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝑀 ∈ ℕ0 → (𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘))) → (𝑀 ∈ ℕ0 → (𝑀 ≤ (𝑘 + 1) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))))
7574imp4a 612 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑀 ∈ ℕ0 → (𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘))) → ((𝑀 ∈ ℕ0𝑀 ≤ (𝑘 + 1)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
7629, 75syl5bi 231 . . . 4 (𝑘 ∈ ℕ0 → (((𝑀 ∈ ℕ0𝑀𝑘) → (!‘𝑀) ≤ (!‘𝑘)) → ((𝑀 ∈ ℕ0𝑀 ≤ (𝑘 + 1)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
775, 10, 15, 20, 28, 76nn0ind 11348 . . 3 (𝑁 ∈ ℕ0 → ((𝑀 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁)))
78773impib 1254 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))
79783com12 1261 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953   ≤ cle 9954  ℕcn 10897  ℕ0cn0 11169  !cfa 12922 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664  df-fac 12923 This theorem is referenced by:  facavg  12950  aaliou3lem6  23907
 Copyright terms: Public domain W3C validator