MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd Structured version   Visualization version   GIF version

Theorem faclbnd 12939
Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
Assertion
Ref Expression
faclbnd ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))

Proof of Theorem faclbnd
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 11171 . 2 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
2 oveq1 6556 . . . . . . . 8 (𝑗 = 0 → (𝑗 + 1) = (0 + 1))
32oveq2d 6565 . . . . . . 7 (𝑗 = 0 → (𝑀↑(𝑗 + 1)) = (𝑀↑(0 + 1)))
4 fveq2 6103 . . . . . . . 8 (𝑗 = 0 → (!‘𝑗) = (!‘0))
54oveq2d 6565 . . . . . . 7 (𝑗 = 0 → ((𝑀𝑀) · (!‘𝑗)) = ((𝑀𝑀) · (!‘0)))
63, 5breq12d 4596 . . . . . 6 (𝑗 = 0 → ((𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗)) ↔ (𝑀↑(0 + 1)) ≤ ((𝑀𝑀) · (!‘0))))
76imbi2d 329 . . . . 5 (𝑗 = 0 → ((𝑀 ∈ ℕ → (𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗))) ↔ (𝑀 ∈ ℕ → (𝑀↑(0 + 1)) ≤ ((𝑀𝑀) · (!‘0)))))
8 oveq1 6556 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
98oveq2d 6565 . . . . . . 7 (𝑗 = 𝑘 → (𝑀↑(𝑗 + 1)) = (𝑀↑(𝑘 + 1)))
10 fveq2 6103 . . . . . . . 8 (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘))
1110oveq2d 6565 . . . . . . 7 (𝑗 = 𝑘 → ((𝑀𝑀) · (!‘𝑗)) = ((𝑀𝑀) · (!‘𝑘)))
129, 11breq12d 4596 . . . . . 6 (𝑗 = 𝑘 → ((𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗)) ↔ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))))
1312imbi2d 329 . . . . 5 (𝑗 = 𝑘 → ((𝑀 ∈ ℕ → (𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗))) ↔ (𝑀 ∈ ℕ → (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)))))
14 oveq1 6556 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (𝑗 + 1) = ((𝑘 + 1) + 1))
1514oveq2d 6565 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝑀↑(𝑗 + 1)) = (𝑀↑((𝑘 + 1) + 1)))
16 fveq2 6103 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1)))
1716oveq2d 6565 . . . . . . 7 (𝑗 = (𝑘 + 1) → ((𝑀𝑀) · (!‘𝑗)) = ((𝑀𝑀) · (!‘(𝑘 + 1))))
1815, 17breq12d 4596 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗)) ↔ (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1)))))
1918imbi2d 329 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑀 ∈ ℕ → (𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗))) ↔ (𝑀 ∈ ℕ → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
20 oveq1 6556 . . . . . . . 8 (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1))
2120oveq2d 6565 . . . . . . 7 (𝑗 = 𝑁 → (𝑀↑(𝑗 + 1)) = (𝑀↑(𝑁 + 1)))
22 fveq2 6103 . . . . . . . 8 (𝑗 = 𝑁 → (!‘𝑗) = (!‘𝑁))
2322oveq2d 6565 . . . . . . 7 (𝑗 = 𝑁 → ((𝑀𝑀) · (!‘𝑗)) = ((𝑀𝑀) · (!‘𝑁)))
2421, 23breq12d 4596 . . . . . 6 (𝑗 = 𝑁 → ((𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗)) ↔ (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))))
2524imbi2d 329 . . . . 5 (𝑗 = 𝑁 → ((𝑀 ∈ ℕ → (𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗))) ↔ (𝑀 ∈ ℕ → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))))
26 nnre 10904 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
27 nnge1 10923 . . . . . . 7 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
28 elnnuz 11600 . . . . . . . 8 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
2928biimpi 205 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘1))
3026, 27, 29leexp2ad 12903 . . . . . 6 (𝑀 ∈ ℕ → (𝑀↑1) ≤ (𝑀𝑀))
31 0p1e1 11009 . . . . . . . 8 (0 + 1) = 1
3231oveq2i 6560 . . . . . . 7 (𝑀↑(0 + 1)) = (𝑀↑1)
3332a1i 11 . . . . . 6 (𝑀 ∈ ℕ → (𝑀↑(0 + 1)) = (𝑀↑1))
34 fac0 12925 . . . . . . . 8 (!‘0) = 1
3534oveq2i 6560 . . . . . . 7 ((𝑀𝑀) · (!‘0)) = ((𝑀𝑀) · 1)
36 nnnn0 11176 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
3726, 36reexpcld 12887 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑀𝑀) ∈ ℝ)
3837recnd 9947 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀𝑀) ∈ ℂ)
3938mulid1d 9936 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑀𝑀) · 1) = (𝑀𝑀))
4035, 39syl5eq 2656 . . . . . 6 (𝑀 ∈ ℕ → ((𝑀𝑀) · (!‘0)) = (𝑀𝑀))
4130, 33, 403brtr4d 4615 . . . . 5 (𝑀 ∈ ℕ → (𝑀↑(0 + 1)) ≤ ((𝑀𝑀) · (!‘0)))
4226ad3antrrr 762 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 𝑀 ∈ ℝ)
43 simpllr 795 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 𝑘 ∈ ℕ0)
44 peano2nn0 11210 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
4543, 44syl 17 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑘 + 1) ∈ ℕ0)
4642, 45reexpcld 12887 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀↑(𝑘 + 1)) ∈ ℝ)
4736ad3antrrr 762 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 𝑀 ∈ ℕ0)
4842, 47reexpcld 12887 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀𝑀) ∈ ℝ)
49 faccl 12932 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
5043, 49syl 17 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (!‘𝑘) ∈ ℕ)
5150nnred 10912 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (!‘𝑘) ∈ ℝ)
5248, 51remulcld 9949 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → ((𝑀𝑀) · (!‘𝑘)) ∈ ℝ)
53 nn0re 11178 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
54 peano2re 10088 . . . . . . . . . . . . . 14 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
5543, 53, 543syl 18 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑘 + 1) ∈ ℝ)
56 nngt0 10926 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 0 < 𝑀)
5756ad3antrrr 762 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 0 < 𝑀)
58 0re 9919 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
59 ltle 10005 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 < 𝑀 → 0 ≤ 𝑀))
6058, 59mpan 702 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℝ → (0 < 𝑀 → 0 ≤ 𝑀))
6142, 57, 60sylc 63 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 0 ≤ 𝑀)
6242, 45, 61expge0d 12888 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 0 ≤ (𝑀↑(𝑘 + 1)))
63 simplr 788 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)))
64 simprr 792 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 𝑀 ≤ (𝑘 + 1))
6546, 52, 42, 55, 62, 61, 63, 64lemul12ad 10845 . . . . . . . . . . . 12 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → ((𝑀↑(𝑘 + 1)) · 𝑀) ≤ (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)))
6665anandis 869 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) ∧ 𝑀 ≤ (𝑘 + 1))) → ((𝑀↑(𝑘 + 1)) · 𝑀) ≤ (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)))
67 nncn 10905 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
68 expp1 12729 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝑀↑((𝑘 + 1) + 1)) = ((𝑀↑(𝑘 + 1)) · 𝑀))
6967, 44, 68syl2an 493 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀↑((𝑘 + 1) + 1)) = ((𝑀↑(𝑘 + 1)) · 𝑀))
7069adantr 480 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀↑((𝑘 + 1) + 1)) = ((𝑀↑(𝑘 + 1)) · 𝑀))
71 facp1 12927 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
7271adantl 481 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
7372oveq2d 6565 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀𝑀) · (!‘(𝑘 + 1))) = ((𝑀𝑀) · ((!‘𝑘) · (𝑘 + 1))))
7438adantr 480 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀𝑀) ∈ ℂ)
7549nncnd 10913 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℂ)
7675adantl 481 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℂ)
77 nn0cn 11179 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
78 peano2cn 10087 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℂ → (𝑘 + 1) ∈ ℂ)
7977, 78syl 17 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
8079adantl 481 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
8174, 76, 80mulassd 9942 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)) = ((𝑀𝑀) · ((!‘𝑘) · (𝑘 + 1))))
8273, 81eqtr4d 2647 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀𝑀) · (!‘(𝑘 + 1))) = (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)))
8382adantr 480 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) ∧ 𝑀 ≤ (𝑘 + 1))) → ((𝑀𝑀) · (!‘(𝑘 + 1))) = (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)))
8466, 70, 833brtr4d 4615 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
8584exp32 629 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀 ≤ (𝑘 + 1) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
8685com23 84 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 ≤ (𝑘 + 1) → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
87 nn0ltp1le 11312 . . . . . . . . . . 11 (((𝑘 + 1) ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑘 + 1) < 𝑀 ↔ ((𝑘 + 1) + 1) ≤ 𝑀))
8844, 36, 87syl2anr 494 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 + 1) < 𝑀 ↔ ((𝑘 + 1) + 1) ≤ 𝑀))
89 peano2nn0 11210 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ0 → ((𝑘 + 1) + 1) ∈ ℕ0)
9044, 89syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((𝑘 + 1) + 1) ∈ ℕ0)
91 reexpcl 12739 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ ((𝑘 + 1) + 1) ∈ ℕ0) → (𝑀↑((𝑘 + 1) + 1)) ∈ ℝ)
9226, 90, 91syl2an 493 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀↑((𝑘 + 1) + 1)) ∈ ℝ)
9392adantr 480 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀↑((𝑘 + 1) + 1)) ∈ ℝ)
9437ad2antrr 758 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀𝑀) ∈ ℝ)
95 faccl 12932 . . . . . . . . . . . . . . . 16 ((𝑘 + 1) ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℕ)
9644, 95syl 17 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℕ)
9796nnred 10912 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℝ)
98 remulcl 9900 . . . . . . . . . . . . . 14 (((𝑀𝑀) ∈ ℝ ∧ (!‘(𝑘 + 1)) ∈ ℝ) → ((𝑀𝑀) · (!‘(𝑘 + 1))) ∈ ℝ)
9937, 97, 98syl2an 493 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀𝑀) · (!‘(𝑘 + 1))) ∈ ℝ)
10099adantr 480 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → ((𝑀𝑀) · (!‘(𝑘 + 1))) ∈ ℝ)
10126ad2antrr 758 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → 𝑀 ∈ ℝ)
10227ad2antrr 758 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → 1 ≤ 𝑀)
103 simpr 476 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → ((𝑘 + 1) + 1) ≤ 𝑀)
10490ad2antlr 759 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → ((𝑘 + 1) + 1) ∈ ℕ0)
105104nn0zd 11356 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → ((𝑘 + 1) + 1) ∈ ℤ)
106 nnz 11276 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
107106ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → 𝑀 ∈ ℤ)
108 eluz 11577 . . . . . . . . . . . . . . 15 ((((𝑘 + 1) + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ∈ (ℤ‘((𝑘 + 1) + 1)) ↔ ((𝑘 + 1) + 1) ≤ 𝑀))
109105, 107, 108syl2anc 691 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀 ∈ (ℤ‘((𝑘 + 1) + 1)) ↔ ((𝑘 + 1) + 1) ≤ 𝑀))
110103, 109mpbird 246 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → 𝑀 ∈ (ℤ‘((𝑘 + 1) + 1)))
111101, 102, 110leexp2ad 12903 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀↑((𝑘 + 1) + 1)) ≤ (𝑀𝑀))
11237, 97anim12i 588 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀𝑀) ∈ ℝ ∧ (!‘(𝑘 + 1)) ∈ ℝ))
113 nn0re 11178 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
114 id 22 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0𝑀 ∈ ℕ0)
115 nn0ge0 11195 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
116113, 114, 115expge0d 12888 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → 0 ≤ (𝑀𝑀))
11736, 116syl 17 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 0 ≤ (𝑀𝑀))
11896nnge1d 10940 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → 1 ≤ (!‘(𝑘 + 1)))
119117, 118anim12i 588 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (0 ≤ (𝑀𝑀) ∧ 1 ≤ (!‘(𝑘 + 1))))
120 lemulge11 10764 . . . . . . . . . . . . . 14 ((((𝑀𝑀) ∈ ℝ ∧ (!‘(𝑘 + 1)) ∈ ℝ) ∧ (0 ≤ (𝑀𝑀) ∧ 1 ≤ (!‘(𝑘 + 1)))) → (𝑀𝑀) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
121112, 119, 120syl2anc 691 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀𝑀) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
122121adantr 480 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀𝑀) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
12393, 94, 100, 111, 122letrd 10073 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
124123ex 449 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((𝑘 + 1) + 1) ≤ 𝑀 → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1)))))
12588, 124sylbid 229 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 + 1) < 𝑀 → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1)))))
126125a1dd 48 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 + 1) < 𝑀 → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
12753, 54syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℝ)
128 lelttric 10023 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → (𝑀 ≤ (𝑘 + 1) ∨ (𝑘 + 1) < 𝑀))
12926, 127, 128syl2an 493 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 ≤ (𝑘 + 1) ∨ (𝑘 + 1) < 𝑀))
13086, 126, 129mpjaod 395 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1)))))
131130expcom 450 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑀 ∈ ℕ → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
132131a2d 29 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑀 ∈ ℕ → (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) → (𝑀 ∈ ℕ → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
1337, 13, 19, 25, 41, 132nn0ind 11348 . . . 4 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℕ → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))))
134133impcom 445 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
135 faccl 12932 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
136135nnnn0d 11228 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ0)
137136nn0ge0d 11231 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ≤ (!‘𝑁))
138 nn0p1nn 11209 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
1391380expd 12886 . . . . . 6 (𝑁 ∈ ℕ0 → (0↑(𝑁 + 1)) = 0)
140 0exp0e1 12727 . . . . . . . 8 (0↑0) = 1
141140oveq1i 6559 . . . . . . 7 ((0↑0) · (!‘𝑁)) = (1 · (!‘𝑁))
142135nncnd 10913 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
143142mulid2d 9937 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 · (!‘𝑁)) = (!‘𝑁))
144141, 143syl5eq 2656 . . . . . 6 (𝑁 ∈ ℕ0 → ((0↑0) · (!‘𝑁)) = (!‘𝑁))
145137, 139, 1443brtr4d 4615 . . . . 5 (𝑁 ∈ ℕ0 → (0↑(𝑁 + 1)) ≤ ((0↑0) · (!‘𝑁)))
146 oveq1 6556 . . . . . 6 (𝑀 = 0 → (𝑀↑(𝑁 + 1)) = (0↑(𝑁 + 1)))
147 oveq12 6558 . . . . . . . 8 ((𝑀 = 0 ∧ 𝑀 = 0) → (𝑀𝑀) = (0↑0))
148147anidms 675 . . . . . . 7 (𝑀 = 0 → (𝑀𝑀) = (0↑0))
149148oveq1d 6564 . . . . . 6 (𝑀 = 0 → ((𝑀𝑀) · (!‘𝑁)) = ((0↑0) · (!‘𝑁)))
150146, 149breq12d 4596 . . . . 5 (𝑀 = 0 → ((𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)) ↔ (0↑(𝑁 + 1)) ≤ ((0↑0) · (!‘𝑁))))
151145, 150syl5ibr 235 . . . 4 (𝑀 = 0 → (𝑁 ∈ ℕ0 → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))))
152151imp 444 . . 3 ((𝑀 = 0 ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
153134, 152jaoian 820 . 2 (((𝑀 ∈ ℕ ∨ 𝑀 = 0) ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
1541, 153sylanb 488 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cn 10897  0cn0 11169  cz 11254  cuz 11563  cexp 12722  !cfa 12922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-fac 12923
This theorem is referenced by:  faclbnd2  12940  faclbnd3  12941
  Copyright terms: Public domain W3C validator