Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > com4l | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Mel L. O'Cat, 15-Aug-2004.) |
Ref | Expression |
---|---|
com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
com4l | ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com3l 87 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → (𝜃 → 𝜏)))) |
3 | 2 | com34 89 | 1 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com4t 91 com4r 92 com14 94 com5l 98 3impd 1273 merco2 1652 onint 6887 oalimcl 7527 oeordsuc 7561 fisup2g 8257 fiinf2g 8289 zorn2lem7 9207 inar1 9476 rpnnen1lem5 11694 rpnnen1lem5OLD 11700 expnbnd 12855 facwordi 12938 fi1uzind 13134 brfi1indALT 13137 fi1uzindOLD 13140 brfi1indALTOLD 13143 unbenlem 15450 fiinopn 20531 cmpsublem 21012 dvcnvrelem1 23584 axcontlem4 25647 axcont 25656 spansncol 27811 atcvat4i 28640 sumdmdlem 28661 nocvxminlem 31089 broutsideof2 31399 relowlpssretop 32388 cvrat4 33747 pm2.43cbi 37745 |
Copyright terms: Public domain | W3C validator |