MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphipval Structured version   Visualization version   GIF version

Theorem cphipval 22850
Description: Value of the inner product expressed by a sum of terms with the norm defined by the inner product. Equation 6.45 of [Ponnusamy] p. 361. (Contributed by NM, 31-Jan-2007.) (Revised by AV, 18-Oct-2021.)
Hypotheses
Ref Expression
cphipfval.x 𝑋 = (Base‘𝑊)
cphipfval.p + = (+g𝑊)
cphipfval.s · = ( ·𝑠𝑊)
cphipfval.n 𝑁 = (norm‘𝑊)
cphipfval.i , = (·𝑖𝑊)
cphipval.f 𝐹 = (Scalar‘𝑊)
cphipval.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphipval (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) / 4))
Distinct variable groups:   𝑘,𝑁   𝐴,𝑘   𝐵,𝑘   𝑘,𝑋   𝑘,𝐾   𝑘,𝑊   + ,𝑘   · ,𝑘
Allowed substitution hints:   𝐹(𝑘)   , (𝑘)

Proof of Theorem cphipval
StepHypRef Expression
1 cphipfval.x . . 3 𝑋 = (Base‘𝑊)
2 cphipfval.p . . 3 + = (+g𝑊)
3 cphipfval.s . . 3 · = ( ·𝑠𝑊)
4 cphipfval.n . . 3 𝑁 = (norm‘𝑊)
5 cphipfval.i . . 3 , = (·𝑖𝑊)
6 eqid 2610 . . 3 (-g𝑊) = (-g𝑊)
7 cphipval.f . . 3 𝐹 = (Scalar‘𝑊)
8 cphipval.k . . 3 𝐾 = (Base‘𝐹)
91, 2, 3, 4, 5, 6, 7, 8cphipval2 22848 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) / 4))
10 ax-icn 9874 . . . . . . . . . 10 i ∈ ℂ
1110a1i 11 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → i ∈ ℂ)
12 simp1l 1078 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ ℂPreHil)
13 cphngp 22781 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
14 ngpgrp 22213 . . . . . . . . . . . . . . 15 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
1513, 14syl 17 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂPreHil → 𝑊 ∈ Grp)
1615adantr 480 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ Grp)
17163ad2ant1 1075 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ Grp)
18 simp2 1055 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
19 cphlmod 22782 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
20193anim1i 1241 . . . . . . . . . . . . . . 15 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐵𝑋) → (𝑊 ∈ LMod ∧ i ∈ 𝐾𝐵𝑋))
21203expa 1257 . . . . . . . . . . . . . 14 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (𝑊 ∈ LMod ∧ i ∈ 𝐾𝐵𝑋))
221, 7, 3, 8lmodvscl 18703 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ i ∈ 𝐾𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
2321, 22syl 17 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
24233adant2 1073 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
251, 2grpcl 17253 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋)
2617, 18, 24, 25syl3anc 1318 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋)
271, 5, 4nmsq 22802 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (i · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))))
2812, 26, 27syl2anc 691 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))))
291, 5reipcl 22805 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (i · 𝐵)) ∈ 𝑋) → ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))) ∈ ℝ)
3012, 26, 29syl2anc 691 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))) ∈ ℝ)
3130recnd 9947 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))) ∈ ℂ)
3228, 31eqeltrd 2688 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) ∈ ℂ)
3311, 32mulcld 9939 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) ∈ ℂ)
3419adantr 480 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ LMod)
35343ad2ant1 1075 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ LMod)
36 cphclm 22797 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
377, 8clmneg1 22690 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂMod → -1 ∈ 𝐾)
3836, 37syl 17 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂPreHil → -1 ∈ 𝐾)
3938adantr 480 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → -1 ∈ 𝐾)
40393ad2ant1 1075 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → -1 ∈ 𝐾)
41 simp3 1056 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
421, 7, 3, 8lmodvscl 18703 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ -1 ∈ 𝐾𝐵𝑋) → (-1 · 𝐵) ∈ 𝑋)
4335, 40, 41, 42syl3anc 1318 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-1 · 𝐵) ∈ 𝑋)
441, 2grpcl 17253 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (-1 · 𝐵) ∈ 𝑋) → (𝐴 + (-1 · 𝐵)) ∈ 𝑋)
4517, 18, 43, 44syl3anc 1318 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-1 · 𝐵)) ∈ 𝑋)
461, 5, 4nmsq 22802 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (-1 · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) = ((𝐴 + (-1 · 𝐵)) , (𝐴 + (-1 · 𝐵))))
4712, 45, 46syl2anc 691 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) = ((𝐴 + (-1 · 𝐵)) , (𝐴 + (-1 · 𝐵))))
481, 5reipcl 22805 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (-1 · 𝐵)) ∈ 𝑋) → ((𝐴 + (-1 · 𝐵)) , (𝐴 + (-1 · 𝐵))) ∈ ℝ)
4912, 45, 48syl2anc 691 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + (-1 · 𝐵)) , (𝐴 + (-1 · 𝐵))) ∈ ℝ)
5047, 49eqeltrd 2688 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) ∈ ℝ)
5150recnd 9947 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) ∈ ℂ)
52 addneg1mul 10351 . . . . . . . 8 (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) ∈ ℂ ∧ ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) ∈ ℂ) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)))
5333, 51, 52syl2anc 691 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)))
5436adantr 480 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ ℂMod)
551, 2, 6, 7, 3clmvsubval 22717 . . . . . . . . . . . 12 ((𝑊 ∈ ℂMod ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)𝐵) = (𝐴 + (-1 · 𝐵)))
5655eqcomd 2616 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-1 · 𝐵)) = (𝐴(-g𝑊)𝐵))
5754, 56syl3an1 1351 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-1 · 𝐵)) = (𝐴(-g𝑊)𝐵))
5857fveq2d 6107 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐴(-g𝑊)𝐵)))
5958oveq1d 6564 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) = ((𝑁‘(𝐴(-g𝑊)𝐵))↑2))
6059oveq2d 6565 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)))
6153, 60eqtrd 2644 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)))
62 eqid 2610 . . . . . . . . . . . . 13 (invg𝑊) = (invg𝑊)
63543ad2ant1 1075 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ ℂMod)
64 simp1r 1079 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → i ∈ 𝐾)
651, 7, 3, 62, 8, 63, 41, 64clmvsneg 22708 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((invg𝑊)‘(i · 𝐵)) = (-i · 𝐵))
6665eqcomd 2616 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-i · 𝐵) = ((invg𝑊)‘(i · 𝐵)))
6766oveq2d 6565 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-i · 𝐵)) = (𝐴 + ((invg𝑊)‘(i · 𝐵))))
681, 2, 62, 6grpsubval 17288 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴(-g𝑊)(i · 𝐵)) = (𝐴 + ((invg𝑊)‘(i · 𝐵))))
6918, 24, 68syl2anc 691 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)(i · 𝐵)) = (𝐴 + ((invg𝑊)‘(i · 𝐵))))
7067, 69eqtr4d 2647 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-i · 𝐵)) = (𝐴(-g𝑊)(i · 𝐵)))
7170fveq2d 6107 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + (-i · 𝐵))) = (𝑁‘(𝐴(-g𝑊)(i · 𝐵))))
7271oveq1d 6564 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-i · 𝐵)))↑2) = ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))
7372oveq2d 6565 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2)) = (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))
7461, 73oveq12d 6567 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
7554anim1i 590 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (𝑊 ∈ ℂMod ∧ 𝐵𝑋))
76753adant2 1073 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑊 ∈ ℂMod ∧ 𝐵𝑋))
771, 3clmvs1 22701 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ 𝐵𝑋) → (1 · 𝐵) = 𝐵)
7876, 77syl 17 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · 𝐵) = 𝐵)
7978oveq2d 6565 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (1 · 𝐵)) = (𝐴 + 𝐵))
8079fveq2d 6107 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + (1 · 𝐵))) = (𝑁‘(𝐴 + 𝐵)))
8180oveq1d 6564 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (1 · 𝐵)))↑2) = ((𝑁‘(𝐴 + 𝐵))↑2))
8281oveq2d 6565 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2)) = (1 · ((𝑁‘(𝐴 + 𝐵))↑2)))
831, 2grpcl 17253 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
8416, 83syl3an1 1351 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
851, 5, 4nmsq 22802 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
8612, 84, 85syl2anc 691 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
871, 5reipcl 22805 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑋) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) ∈ ℝ)
8812, 84, 87syl2anc 691 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) ∈ ℝ)
8986, 88eqeltrd 2688 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) ∈ ℝ)
9089recnd 9947 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) ∈ ℂ)
9190mulid2d 9937 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴 + 𝐵))↑2)) = ((𝑁‘(𝐴 + 𝐵))↑2))
9282, 91eqtrd 2644 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2)) = ((𝑁‘(𝐴 + 𝐵))↑2))
9374, 92oveq12d 6567 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
94 nnuz 11599 . . . . . 6 ℕ = (ℤ‘1)
95 df-4 10958 . . . . . 6 4 = (3 + 1)
96 oveq2 6557 . . . . . . . 8 (𝑘 = 4 → (i↑𝑘) = (i↑4))
97 i4 12829 . . . . . . . 8 (i↑4) = 1
9896, 97syl6eq 2660 . . . . . . 7 (𝑘 = 4 → (i↑𝑘) = 1)
9998oveq1d 6564 . . . . . . . . . 10 (𝑘 = 4 → ((i↑𝑘) · 𝐵) = (1 · 𝐵))
10099oveq2d 6565 . . . . . . . . 9 (𝑘 = 4 → (𝐴 + ((i↑𝑘) · 𝐵)) = (𝐴 + (1 · 𝐵)))
101100fveq2d 6107 . . . . . . . 8 (𝑘 = 4 → (𝑁‘(𝐴 + ((i↑𝑘) · 𝐵))) = (𝑁‘(𝐴 + (1 · 𝐵))))
102101oveq1d 6564 . . . . . . 7 (𝑘 = 4 → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))
10398, 102oveq12d 6567 . . . . . 6 (𝑘 = 4 → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2)))
10410a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ → i ∈ ℂ)
105 nnnn0 11176 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
106104, 105expcld 12870 . . . . . . . 8 (𝑘 ∈ ℕ → (i↑𝑘) ∈ ℂ)
107106adantl 481 . . . . . . 7 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ ℂ)
10812adantr 480 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝑊 ∈ ℂPreHil)
10917adantr 480 . . . . . . . . . 10 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝑊 ∈ Grp)
11018adantr 480 . . . . . . . . . 10 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝐴𝑋)
11135adantr 480 . . . . . . . . . . 11 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝑊 ∈ LMod)
11236anim1i 590 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → (𝑊 ∈ ℂMod ∧ i ∈ 𝐾))
1131123ad2ant1 1075 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑊 ∈ ℂMod ∧ i ∈ 𝐾))
1147, 8cmodscexp 22729 . . . . . . . . . . . 12 (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ 𝐾)
115113, 114sylan 487 . . . . . . . . . . 11 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ 𝐾)
11641adantr 480 . . . . . . . . . . 11 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝐵𝑋)
1171, 7, 3, 8lmodvscl 18703 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (i↑𝑘) ∈ 𝐾𝐵𝑋) → ((i↑𝑘) · 𝐵) ∈ 𝑋)
118111, 115, 116, 117syl3anc 1318 . . . . . . . . . 10 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · 𝐵) ∈ 𝑋)
1191, 2grpcl 17253 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ ((i↑𝑘) · 𝐵) ∈ 𝑋) → (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋)
120109, 110, 118, 119syl3anc 1318 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋)
1211, 5, 4nmsq 22802 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))))
122108, 120, 121syl2anc 691 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))))
1231, 5reipcl 22805 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℝ)
124108, 120, 123syl2anc 691 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℝ)
125124recnd 9947 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℂ)
126122, 125eqeltrd 2688 . . . . . . 7 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) ∈ ℂ)
127107, 126mulcld 9939 . . . . . 6 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) ∈ ℂ)
128 df-3 10957 . . . . . . 7 3 = (2 + 1)
129 oveq2 6557 . . . . . . . . 9 (𝑘 = 3 → (i↑𝑘) = (i↑3))
130 i3 12828 . . . . . . . . 9 (i↑3) = -i
131129, 130syl6eq 2660 . . . . . . . 8 (𝑘 = 3 → (i↑𝑘) = -i)
132131oveq1d 6564 . . . . . . . . . . 11 (𝑘 = 3 → ((i↑𝑘) · 𝐵) = (-i · 𝐵))
133132oveq2d 6565 . . . . . . . . . 10 (𝑘 = 3 → (𝐴 + ((i↑𝑘) · 𝐵)) = (𝐴 + (-i · 𝐵)))
134133fveq2d 6107 . . . . . . . . 9 (𝑘 = 3 → (𝑁‘(𝐴 + ((i↑𝑘) · 𝐵))) = (𝑁‘(𝐴 + (-i · 𝐵))))
135134oveq1d 6564 . . . . . . . 8 (𝑘 = 3 → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))
136131, 135oveq12d 6567 . . . . . . 7 (𝑘 = 3 → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2)))
13710a1i 11 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → i ∈ ℂ)
138105adantl 481 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
139137, 138expcld 12870 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ ℂ)
140123recnd 9947 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℂ)
141108, 120, 140syl2anc 691 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℂ)
142122, 141eqeltrd 2688 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) ∈ ℂ)
143139, 142mulcld 9939 . . . . . . 7 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) ∈ ℂ)
144 df-2 10956 . . . . . . . 8 2 = (1 + 1)
145 oveq2 6557 . . . . . . . . . 10 (𝑘 = 2 → (i↑𝑘) = (i↑2))
146 i2 12827 . . . . . . . . . 10 (i↑2) = -1
147145, 146syl6eq 2660 . . . . . . . . 9 (𝑘 = 2 → (i↑𝑘) = -1)
148147oveq1d 6564 . . . . . . . . . . . 12 (𝑘 = 2 → ((i↑𝑘) · 𝐵) = (-1 · 𝐵))
149148oveq2d 6565 . . . . . . . . . . 11 (𝑘 = 2 → (𝐴 + ((i↑𝑘) · 𝐵)) = (𝐴 + (-1 · 𝐵)))
150149fveq2d 6107 . . . . . . . . . 10 (𝑘 = 2 → (𝑁‘(𝐴 + ((i↑𝑘) · 𝐵))) = (𝑁‘(𝐴 + (-1 · 𝐵))))
151150oveq1d 6564 . . . . . . . . 9 (𝑘 = 2 → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))
152147, 151oveq12d 6567 . . . . . . . 8 (𝑘 = 2 → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)))
153139, 126mulcld 9939 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) ∈ ℂ)
154 1z 11284 . . . . . . . . . 10 1 ∈ ℤ
155 oveq2 6557 . . . . . . . . . . . . 13 (𝑘 = 1 → (i↑𝑘) = (i↑1))
156 exp1 12728 . . . . . . . . . . . . . 14 (i ∈ ℂ → (i↑1) = i)
15710, 156ax-mp 5 . . . . . . . . . . . . 13 (i↑1) = i
158155, 157syl6eq 2660 . . . . . . . . . . . 12 (𝑘 = 1 → (i↑𝑘) = i)
159158oveq1d 6564 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((i↑𝑘) · 𝐵) = (i · 𝐵))
160159oveq2d 6565 . . . . . . . . . . . . . 14 (𝑘 = 1 → (𝐴 + ((i↑𝑘) · 𝐵)) = (𝐴 + (i · 𝐵)))
161160fveq2d 6107 . . . . . . . . . . . . 13 (𝑘 = 1 → (𝑁‘(𝐴 + ((i↑𝑘) · 𝐵))) = (𝑁‘(𝐴 + (i · 𝐵))))
162161oveq1d 6564 . . . . . . . . . . . 12 (𝑘 = 1 → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝑁‘(𝐴 + (i · 𝐵)))↑2))
163158, 162oveq12d 6567 . . . . . . . . . . 11 (𝑘 = 1 → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)))
164163fsum1 14320 . . . . . . . . . 10 ((1 ∈ ℤ ∧ (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) ∈ ℂ) → Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)))
165154, 33, 164sylancr 694 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)))
166 1nn 10908 . . . . . . . . 9 1 ∈ ℕ
167165, 166jctil 558 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 ∈ ℕ ∧ Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2))))
168 eqidd 2611 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))))
16994, 144, 152, 153, 167, 168fsump1i 14342 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (2 ∈ ℕ ∧ Σ𝑘 ∈ (1...2)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)))))
170 eqidd 2611 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))))
17194, 128, 136, 143, 169, 170fsump1i 14342 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (3 ∈ ℕ ∧ Σ𝑘 ∈ (1...3)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2)))))
172 eqidd 2611 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))))
17394, 95, 103, 127, 171, 172fsump1i 14342 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (4 ∈ ℕ ∧ Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2)))))
174173simprd 478 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))))
1751, 6grpsubcl 17318 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)𝐵) ∈ 𝑋)
17616, 175syl3an1 1351 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)𝐵) ∈ 𝑋)
1771, 5, 4nmsq 22802 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑋) → ((𝑁‘(𝐴(-g𝑊)𝐵))↑2) = ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)))
17812, 176, 177syl2anc 691 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)𝐵))↑2) = ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)))
1791, 5reipcl 22805 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑋) → ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) ∈ ℝ)
18012, 176, 179syl2anc 691 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) ∈ ℝ)
181178, 180eqeltrd 2688 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)𝐵))↑2) ∈ ℝ)
182181recnd 9947 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)𝐵))↑2) ∈ ℂ)
18390, 182subcld 10271 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) ∈ ℂ)
1841, 6grpsubcl 17318 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴(-g𝑊)(i · 𝐵)) ∈ 𝑋)
18517, 18, 24, 184syl3anc 1318 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)(i · 𝐵)) ∈ 𝑋)
1861, 5, 4nmsq 22802 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)(i · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2) = ((𝐴(-g𝑊)(i · 𝐵)) , (𝐴(-g𝑊)(i · 𝐵))))
18712, 185, 186syl2anc 691 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2) = ((𝐴(-g𝑊)(i · 𝐵)) , (𝐴(-g𝑊)(i · 𝐵))))
1881, 5reipcl 22805 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)(i · 𝐵)) ∈ 𝑋) → ((𝐴(-g𝑊)(i · 𝐵)) , (𝐴(-g𝑊)(i · 𝐵))) ∈ ℝ)
18912, 185, 188syl2anc 691 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴(-g𝑊)(i · 𝐵)) , (𝐴(-g𝑊)(i · 𝐵))) ∈ ℝ)
190187, 189eqeltrd 2688 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2) ∈ ℝ)
191190recnd 9947 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2) ∈ ℂ)
19232, 191subcld 10271 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)) ∈ ℂ)
19311, 192mulcld 9939 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) ∈ ℂ)
194183, 193addcomd 10117 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) = ((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2))))
195193, 182, 90subadd23d 10293 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + ((𝑁‘(𝐴 + 𝐵))↑2)) = ((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2))))
19632, 191, 11subdir2d 10367 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
197196oveq1d 6564 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)))
19811, 191mulcld 9939 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)) ∈ ℂ)
19933, 198, 182sub32d 10303 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
200197, 199eqtrd 2644 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
201200oveq1d 6564 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + ((𝑁‘(𝐴 + 𝐵))↑2)) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
202194, 195, 2013eqtr2d 2650 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
20333, 182subcld 10271 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) ∈ ℂ)
204203, 198negsubd 10277 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + -(i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
20511, 191mulneg1d 10362 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)) = -(i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))
206205eqcomd 2616 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → -(i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)) = (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))
207206oveq2d 6565 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + -(i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
208204, 207eqtr3d 2646 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
209208oveq1d 6564 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
210202, 209eqtrd 2644 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
21193, 174, 2103eqtr4rd 2655 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)))
212211oveq1d 6564 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) / 4))
2139, 212eqtrd 2644 1 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  1c1 9816  ici 9817   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  3c3 10948  4c4 10949  0cn0 11169  cz 11254  ...cfz 12197  cexp 12722  Σcsu 14264  Basecbs 15695  +gcplusg 15768  Scalarcsca 15771   ·𝑠 cvsca 15772  ·𝑖cip 15773  Grpcgrp 17245  invgcminusg 17246  -gcsg 17247  LModclmod 18686  normcnm 22191  NrmGrpcngp 22192  ℂModcclm 22670  ℂPreHilccph 22774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-topgen 15927  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-rnghom 18538  df-drng 18572  df-subrg 18601  df-staf 18668  df-srng 18669  df-lmod 18688  df-lmhm 18843  df-lvec 18924  df-sra 18993  df-rgmod 18994  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-phl 19790  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-xms 21935  df-ms 21936  df-nm 22197  df-ngp 22198  df-nlm 22201  df-clm 22671  df-cph 22776
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator