MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4cphipval2 Structured version   Visualization version   GIF version

Theorem 4cphipval2 22849
Description: Four times the inner product value cphipval2 22848. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 18-Oct-2021.)
Hypotheses
Ref Expression
cphipfval.x 𝑋 = (Base‘𝑊)
cphipfval.p + = (+g𝑊)
cphipfval.s · = ( ·𝑠𝑊)
cphipfval.n 𝑁 = (norm‘𝑊)
cphipfval.i , = (·𝑖𝑊)
cphipval2.m = (-g𝑊)
cphipval2.f 𝐹 = (Scalar‘𝑊)
cphipval2.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
4cphipval2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (4 · (𝐴 , 𝐵)) = ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))))

Proof of Theorem 4cphipval2
StepHypRef Expression
1 cphipfval.x . . . 4 𝑋 = (Base‘𝑊)
2 cphipfval.p . . . 4 + = (+g𝑊)
3 cphipfval.s . . . 4 · = ( ·𝑠𝑊)
4 cphipfval.n . . . 4 𝑁 = (norm‘𝑊)
5 cphipfval.i . . . 4 , = (·𝑖𝑊)
6 cphipval2.m . . . 4 = (-g𝑊)
7 cphipval2.f . . . 4 𝐹 = (Scalar‘𝑊)
8 cphipval2.k . . . 4 𝐾 = (Base‘𝐹)
91, 2, 3, 4, 5, 6, 7, 8cphipval2 22848 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))) / 4))
109oveq2d 6565 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (4 · (𝐴 , 𝐵)) = (4 · (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))) / 4)))
117, 8cphsubrg 22788 . . . . . . . . . 10 (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld))
12 cnfldbas 19571 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
1312subrgss 18604 . . . . . . . . . 10 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ)
1411, 13syl 17 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → 𝐾 ⊆ ℂ)
1514adantr 480 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝐾 ⊆ ℂ)
16153ad2ant1 1075 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐾 ⊆ ℂ)
17 simp1l 1078 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ ℂPreHil)
18 cphngp 22781 . . . . . . . . . . 11 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
19 ngpgrp 22213 . . . . . . . . . . 11 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
2018, 19syl 17 . . . . . . . . . 10 (𝑊 ∈ ℂPreHil → 𝑊 ∈ Grp)
2120adantr 480 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ Grp)
221, 2grpcl 17253 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
2321, 22syl3an1 1351 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
241, 5, 4, 7, 8cphnmcl 22804 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑋) → (𝑁‘(𝐴 + 𝐵)) ∈ 𝐾)
2517, 23, 24syl2anc 691 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + 𝐵)) ∈ 𝐾)
2616, 25sseldd 3569 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + 𝐵)) ∈ ℂ)
2726sqcld 12868 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) ∈ ℂ)
281, 6grpsubcl 17318 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 𝐵) ∈ 𝑋)
2921, 28syl3an1 1351 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 𝐵) ∈ 𝑋)
301, 5, 4, 7, 8cphnmcl 22804 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ (𝐴 𝐵) ∈ 𝑋) → (𝑁‘(𝐴 𝐵)) ∈ 𝐾)
3117, 29, 30syl2anc 691 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 𝐵)) ∈ 𝐾)
3216, 31sseldd 3569 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 𝐵)) ∈ ℂ)
3332sqcld 12868 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 𝐵))↑2) ∈ ℂ)
3427, 33subcld 10271 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) ∈ ℂ)
35 ax-icn 9874 . . . . . 6 i ∈ ℂ
3635a1i 11 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → i ∈ ℂ)
3717, 20syl 17 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ Grp)
38 simp2 1055 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
39 cphlmod 22782 . . . . . . . . . . . . 13 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
4039adantr 480 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ LMod)
41403ad2ant1 1075 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ LMod)
42 simp1r 1079 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → i ∈ 𝐾)
43 simp3 1056 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
441, 7, 3, 8lmodvscl 18703 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ i ∈ 𝐾𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
4541, 42, 43, 44syl3anc 1318 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
461, 2grpcl 17253 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋)
4737, 38, 45, 46syl3anc 1318 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋)
481, 5, 4, 7, 8cphnmcl 22804 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (i · 𝐵)) ∈ 𝑋) → (𝑁‘(𝐴 + (i · 𝐵))) ∈ 𝐾)
4917, 47, 48syl2anc 691 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + (i · 𝐵))) ∈ 𝐾)
5016, 49sseldd 3569 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + (i · 𝐵))) ∈ ℂ)
5150sqcld 12868 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) ∈ ℂ)
521, 6grpsubcl 17318 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴 (i · 𝐵)) ∈ 𝑋)
5337, 38, 45, 52syl3anc 1318 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 (i · 𝐵)) ∈ 𝑋)
541, 5, 4, 7, 8cphnmcl 22804 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (𝐴 (i · 𝐵)) ∈ 𝑋) → (𝑁‘(𝐴 (i · 𝐵))) ∈ 𝐾)
5517, 53, 54syl2anc 691 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 (i · 𝐵))) ∈ 𝐾)
5616, 55sseldd 3569 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 (i · 𝐵))) ∈ ℂ)
5756sqcld 12868 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 (i · 𝐵)))↑2) ∈ ℂ)
5851, 57subcld 10271 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)) ∈ ℂ)
5936, 58mulcld 9939 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2))) ∈ ℂ)
6034, 59addcld 9938 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))) ∈ ℂ)
61 4cn 10975 . . . 4 4 ∈ ℂ
6261a1i 11 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 4 ∈ ℂ)
63 4ne0 10994 . . . 4 4 ≠ 0
6463a1i 11 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 4 ≠ 0)
6560, 62, 64divcan2d 10682 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (4 · (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))) / 4)) = ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))))
6610, 65eqtrd 2644 1 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (4 · (𝐴 , 𝐵)) = ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wss 3540  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  ici 9817   + caddc 9818   · cmul 9820  cmin 10145   / cdiv 10563  2c2 10947  4c4 10949  cexp 12722  Basecbs 15695  +gcplusg 15768  Scalarcsca 15771   ·𝑠 cvsca 15772  ·𝑖cip 15773  Grpcgrp 17245  -gcsg 17247  SubRingcsubrg 18599  LModclmod 18686  fldccnfld 19567  normcnm 22191  NrmGrpcngp 22192  ℂPreHilccph 22774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ico 12052  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-topgen 15927  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-ghm 17481  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-rnghom 18538  df-drng 18572  df-subrg 18601  df-staf 18668  df-srng 18669  df-lmod 18688  df-lmhm 18843  df-lvec 18924  df-sra 18993  df-rgmod 18994  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-phl 19790  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-xms 21935  df-ms 21936  df-nm 22197  df-ngp 22198  df-nlm 22201  df-clm 22671  df-cph 22776
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator