MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphipval2 Structured version   Visualization version   GIF version

Theorem cphipval2 22848
Description: Value of the inner product expressed by the norm defined by it. (Contributed by NM, 31-Jan-2007.) (Revised by AV, 18-Oct-2021.)
Hypotheses
Ref Expression
cphipfval.x 𝑋 = (Base‘𝑊)
cphipfval.p + = (+g𝑊)
cphipfval.s · = ( ·𝑠𝑊)
cphipfval.n 𝑁 = (norm‘𝑊)
cphipfval.i , = (·𝑖𝑊)
cphipval2.m = (-g𝑊)
cphipval2.f 𝐹 = (Scalar‘𝑊)
cphipval2.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphipval2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))) / 4))

Proof of Theorem cphipval2
StepHypRef Expression
1 simpl 472 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ ℂPreHil)
213ad2ant1 1075 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ ℂPreHil)
3 cphngp 22781 . . . . . . . . . . 11 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
43adantr 480 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ NrmGrp)
5 ngpgrp 22213 . . . . . . . . . 10 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
64, 5syl 17 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ Grp)
7 cphipfval.x . . . . . . . . . 10 𝑋 = (Base‘𝑊)
8 cphipfval.p . . . . . . . . . 10 + = (+g𝑊)
97, 8grpcl 17253 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
106, 9syl3an1 1351 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
11 cphipfval.i . . . . . . . . 9 , = (·𝑖𝑊)
12 cphipfval.n . . . . . . . . 9 𝑁 = (norm‘𝑊)
137, 11, 12nmsq 22802 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
142, 10, 13syl2anc 691 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
15 simp2 1055 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
16 simp3 1056 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
1711, 7, 8, 2, 15, 16, 15, 16cph2di 22815 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
1814, 17eqtrd 2644 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
19 cphipval2.m . . . . . . . . . 10 = (-g𝑊)
207, 19grpsubcl 17318 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 𝐵) ∈ 𝑋)
216, 20syl3an1 1351 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 𝐵) ∈ 𝑋)
227, 11, 12nmsq 22802 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ (𝐴 𝐵) ∈ 𝑋) → ((𝑁‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) , (𝐴 𝐵)))
232, 21, 22syl2anc 691 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) , (𝐴 𝐵)))
2411, 7, 19, 2, 15, 16, 15, 16cph2subdi 22818 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 𝐵) , (𝐴 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
2523, 24eqtrd 2644 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 𝐵))↑2) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
2618, 25oveq12d 6567 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) = ((((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) − (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴)))))
277, 11reipcl 22805 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑋) → (𝐴 , 𝐴) ∈ ℝ)
2827adantlr 747 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋) → (𝐴 , 𝐴) ∈ ℝ)
2928recnd 9947 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋) → (𝐴 , 𝐴) ∈ ℂ)
30293adant3 1074 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐴) ∈ ℂ)
317, 11reipcl 22805 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑋) → (𝐵 , 𝐵) ∈ ℝ)
3231adantlr 747 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (𝐵 , 𝐵) ∈ ℝ)
3332recnd 9947 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (𝐵 , 𝐵) ∈ ℂ)
34333adant2 1073 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐵 , 𝐵) ∈ ℂ)
3530, 34addcld 9938 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ ℂ)
367, 11cphipcl 22799 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) ∈ ℂ)
371, 36syl3an1 1351 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) ∈ ℂ)
387, 11cphipcl 22799 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑋𝐴𝑋) → (𝐵 , 𝐴) ∈ ℂ)
391, 38syl3an1 1351 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋𝐴𝑋) → (𝐵 , 𝐴) ∈ ℂ)
40393com23 1263 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐵 , 𝐴) ∈ ℂ)
4137, 40addcld 9938 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ ℂ)
4235, 41, 41pnncand 10310 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) − (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴)))) = (((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
4326, 42eqtrd 2644 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) = (((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
4463ad2ant1 1075 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ Grp)
45 cphlmod 22782 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
4645adantr 480 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ LMod)
4746adantr 480 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → 𝑊 ∈ LMod)
48 simplr 788 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → i ∈ 𝐾)
49 simpr 476 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → 𝐵𝑋)
50 cphipval2.f . . . . . . . . . . . . 13 𝐹 = (Scalar‘𝑊)
51 cphipfval.s . . . . . . . . . . . . 13 · = ( ·𝑠𝑊)
52 cphipval2.k . . . . . . . . . . . . 13 𝐾 = (Base‘𝐹)
537, 50, 51, 52lmodvscl 18703 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ i ∈ 𝐾𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
5447, 48, 49, 53syl3anc 1318 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
55543adant2 1073 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
567, 8grpcl 17253 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋)
5744, 15, 55, 56syl3anc 1318 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋)
587, 11, 12nmsq 22802 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (i · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))))
592, 57, 58syl2anc 691 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))))
6011, 7, 8, 2, 15, 55, 15, 55cph2di 22815 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))) = (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))
6159, 60eqtrd 2644 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) = (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))
627, 19grpsubcl 17318 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴 (i · 𝐵)) ∈ 𝑋)
6344, 15, 55, 62syl3anc 1318 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 (i · 𝐵)) ∈ 𝑋)
647, 11, 12nmsq 22802 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (𝐴 (i · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 (i · 𝐵)))↑2) = ((𝐴 (i · 𝐵)) , (𝐴 (i · 𝐵))))
652, 63, 64syl2anc 691 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 (i · 𝐵)))↑2) = ((𝐴 (i · 𝐵)) , (𝐴 (i · 𝐵))))
6611, 7, 19, 2, 15, 55, 15, 55cph2subdi 22818 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 (i · 𝐵)) , (𝐴 (i · 𝐵))) = (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) − ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))
6765, 66eqtrd 2644 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 (i · 𝐵)))↑2) = (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) − ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))
6861, 67oveq12d 6567 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)) = ((((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))) − (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) − ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)))))
6968oveq2d 6565 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2))) = (i · ((((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))) − (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) − ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))))
707, 11cphipcl 22799 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (i · 𝐵) ∈ 𝑋 ∧ (i · 𝐵) ∈ 𝑋) → ((i · 𝐵) , (i · 𝐵)) ∈ ℂ)
712, 55, 55, 70syl3anc 1318 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · 𝐵) , (i · 𝐵)) ∈ ℂ)
7230, 71addcld 9938 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) ∈ ℂ)
737, 11cphipcl 22799 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴 , (i · 𝐵)) ∈ ℂ)
742, 15, 55, 73syl3anc 1318 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , (i · 𝐵)) ∈ ℂ)
757, 11cphipcl 22799 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (i · 𝐵) ∈ 𝑋𝐴𝑋) → ((i · 𝐵) , 𝐴) ∈ ℂ)
762, 55, 15, 75syl3anc 1318 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · 𝐵) , 𝐴) ∈ ℂ)
7774, 76addcld 9938 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) ∈ ℂ)
7872, 77, 77pnncand 10310 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))) − (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) − ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)))) = (((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))
7978oveq2d 6565 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · ((((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))) − (((𝐴 , 𝐴) + ((i · 𝐵) , (i · 𝐵))) − ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))))) = (i · (((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)))))
807, 51, 11, 50, 52cphassir 22823 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , (i · 𝐵)) = (-i · (𝐴 , 𝐵)))
817, 51, 11, 50, 52cphassi 22822 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · 𝐵) , 𝐴) = (i · (𝐵 , 𝐴)))
8280, 81oveq12d 6567 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) = ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))))
8382, 82oveq12d 6567 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴))) = (((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))) + ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴)))))
8483oveq2d 6565 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)))) = (i · (((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))) + ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))))))
85 ax-icn 9874 . . . . . . . 8 i ∈ ℂ
8685a1i 11 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → i ∈ ℂ)
87 negicn 10161 . . . . . . . . . 10 -i ∈ ℂ
8887a1i 11 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → -i ∈ ℂ)
8988, 37mulcld 9939 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-i · (𝐴 , 𝐵)) ∈ ℂ)
9086, 40mulcld 9939 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (𝐵 , 𝐴)) ∈ ℂ)
9189, 90addcld 9938 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))) ∈ ℂ)
9286, 91, 91adddid 9943 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))) + ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))))) = ((i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴)))) + (i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))))))
9386, 89, 90adddid 9943 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴)))) = ((i · (-i · (𝐴 , 𝐵))) + (i · (i · (𝐵 , 𝐴)))))
9485, 85mulneg2i 10356 . . . . . . . . . . . . 13 (i · -i) = -(i · i)
95 ixi 10535 . . . . . . . . . . . . . 14 (i · i) = -1
9695negeqi 10153 . . . . . . . . . . . . 13 -(i · i) = --1
97 negneg1e1 11005 . . . . . . . . . . . . 13 --1 = 1
9894, 96, 973eqtri 2636 . . . . . . . . . . . 12 (i · -i) = 1
9998oveq1i 6559 . . . . . . . . . . 11 ((i · -i) · (𝐴 , 𝐵)) = (1 · (𝐴 , 𝐵))
10086, 88, 37mulassd 9942 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · -i) · (𝐴 , 𝐵)) = (i · (-i · (𝐴 , 𝐵))))
10199, 100syl5reqr 2659 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (-i · (𝐴 , 𝐵))) = (1 · (𝐴 , 𝐵)))
10295oveq1i 6559 . . . . . . . . . . 11 ((i · i) · (𝐵 , 𝐴)) = (-1 · (𝐵 , 𝐴))
10386, 86, 40mulassd 9942 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · i) · (𝐵 , 𝐴)) = (i · (i · (𝐵 , 𝐴))))
104102, 103syl5reqr 2659 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (i · (𝐵 , 𝐴))) = (-1 · (𝐵 , 𝐴)))
105101, 104oveq12d 6567 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · (-i · (𝐴 , 𝐵))) + (i · (i · (𝐵 , 𝐴)))) = ((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴))))
10693, 105eqtrd 2644 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴)))) = ((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴))))
107106, 106oveq12d 6567 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴)))) + (i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))))) = (((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴))) + ((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴)))))
10837mulid2d 9937 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · (𝐴 , 𝐵)) = (𝐴 , 𝐵))
109108oveq1d 6564 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴))) = ((𝐴 , 𝐵) + (-1 · (𝐵 , 𝐴))))
110 addneg1mul 10351 . . . . . . . . . 10 (((𝐴 , 𝐵) ∈ ℂ ∧ (𝐵 , 𝐴) ∈ ℂ) → ((𝐴 , 𝐵) + (-1 · (𝐵 , 𝐴))) = ((𝐴 , 𝐵) − (𝐵 , 𝐴)))
11137, 40, 110syl2anc 691 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , 𝐵) + (-1 · (𝐵 , 𝐴))) = ((𝐴 , 𝐵) − (𝐵 , 𝐴)))
112109, 111eqtrd 2644 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴))) = ((𝐴 , 𝐵) − (𝐵 , 𝐴)))
113112, 112oveq12d 6567 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴))) + ((1 · (𝐴 , 𝐵)) + (-1 · (𝐵 , 𝐴)))) = (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))))
114107, 113eqtrd 2644 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴)))) + (i · ((-i · (𝐴 , 𝐵)) + (i · (𝐵 , 𝐴))))) = (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))))
11584, 92, 1143eqtrd 2648 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)) + ((𝐴 , (i · 𝐵)) + ((i · 𝐵) , 𝐴)))) = (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))))
11669, 79, 1153eqtrd 2648 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2))) = (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))))
11743, 116oveq12d 6567 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))) = ((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))))
118117oveq1d 6564 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))) / 4) = (((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))) / 4))
11937, 40subcld 10271 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , 𝐵) − (𝐵 , 𝐴)) ∈ ℂ)
12041, 41, 119, 119add4d 10143 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))) = ((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))) + (((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))))
12137, 40, 37ppncand 10311 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))) = ((𝐴 , 𝐵) + (𝐴 , 𝐵)))
122121, 121oveq12d 6567 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴))) + (((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))) = (((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))))
123120, 122eqtrd 2644 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))) = (((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))))
124123oveq1d 6564 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((((𝐴 , 𝐵) + (𝐵 , 𝐴)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐵) − (𝐵 , 𝐴)) + ((𝐴 , 𝐵) − (𝐵 , 𝐴)))) / 4) = ((((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))) / 4))
125372timesd 11152 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (2 · (𝐴 , 𝐵)) = ((𝐴 , 𝐵) + (𝐴 , 𝐵)))
126125eqcomd 2616 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 , 𝐵) + (𝐴 , 𝐵)) = (2 · (𝐴 , 𝐵)))
127126, 126oveq12d 6567 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))) = ((2 · (𝐴 , 𝐵)) + (2 · (𝐴 , 𝐵))))
128 2cnd 10970 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 2 ∈ ℂ)
129128, 128, 37adddird 9944 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((2 + 2) · (𝐴 , 𝐵)) = ((2 · (𝐴 , 𝐵)) + (2 · (𝐴 , 𝐵))))
130 2p2e4 11021 . . . . . . 7 (2 + 2) = 4
131130a1i 11 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (2 + 2) = 4)
132131oveq1d 6564 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((2 + 2) · (𝐴 , 𝐵)) = (4 · (𝐴 , 𝐵)))
133127, 129, 1323eqtr2d 2650 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))) = (4 · (𝐴 , 𝐵)))
134133oveq1d 6564 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))) / 4) = ((4 · (𝐴 , 𝐵)) / 4))
135 4cn 10975 . . . . 5 4 ∈ ℂ
136135a1i 11 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 4 ∈ ℂ)
137 4ne0 10994 . . . . 5 4 ≠ 0
138137a1i 11 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 4 ≠ 0)
13937, 136, 138divcan3d 10685 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((4 · (𝐴 , 𝐵)) / 4) = (𝐴 , 𝐵))
140134, 139eqtrd 2644 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝐴 , 𝐵) + (𝐴 , 𝐵)) + ((𝐴 , 𝐵) + (𝐴 , 𝐵))) / 4) = (𝐴 , 𝐵))
141118, 124, 1403eqtrrd 2649 1 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 (i · 𝐵)))↑2)))) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816  ici 9817   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  4c4 10949  cexp 12722  Basecbs 15695  +gcplusg 15768  Scalarcsca 15771   ·𝑠 cvsca 15772  ·𝑖cip 15773  Grpcgrp 17245  -gcsg 17247  LModclmod 18686  normcnm 22191  NrmGrpcngp 22192  ℂPreHilccph 22774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-topgen 15927  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-ghm 17481  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-rnghom 18538  df-drng 18572  df-subrg 18601  df-staf 18668  df-srng 18669  df-lmod 18688  df-lmhm 18843  df-lvec 18924  df-sra 18993  df-rgmod 18994  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-phl 19790  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-xms 21935  df-ms 21936  df-nm 22197  df-ngp 22198  df-nlm 22201  df-clm 22671  df-cph 22776
This theorem is referenced by:  4cphipval2  22849  cphipval  22850
  Copyright terms: Public domain W3C validator