MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfacrp Structured version   Visualization version   GIF version

Theorem ablfacrp 18288
Description: A finite abelian group whose order factors into relatively prime integers, itself "factors" into two subgroups 𝐾, 𝐿 that have trivial intersection and whose product is the whole group. Lemma 6.1C.2 of [Shapiro], p. 199. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
ablfacrp.b 𝐵 = (Base‘𝐺)
ablfacrp.o 𝑂 = (od‘𝐺)
ablfacrp.k 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
ablfacrp.l 𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}
ablfacrp.g (𝜑𝐺 ∈ Abel)
ablfacrp.m (𝜑𝑀 ∈ ℕ)
ablfacrp.n (𝜑𝑁 ∈ ℕ)
ablfacrp.1 (𝜑 → (𝑀 gcd 𝑁) = 1)
ablfacrp.2 (𝜑 → (#‘𝐵) = (𝑀 · 𝑁))
ablfacrp.z 0 = (0g𝐺)
ablfacrp.s = (LSSum‘𝐺)
Assertion
Ref Expression
ablfacrp (𝜑 → ((𝐾𝐿) = { 0 } ∧ (𝐾 𝐿) = 𝐵))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑂   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥   𝑥, 0
Allowed substitution hints:   (𝑥)   𝐾(𝑥)   𝐿(𝑥)

Proof of Theorem ablfacrp
Dummy variables 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablfacrp.k . . . . . 6 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
2 ablfacrp.l . . . . . 6 𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}
31, 2ineq12i 3774 . . . . 5 (𝐾𝐿) = ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
4 inrab 3858 . . . . 5 ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∩ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) = {𝑥𝐵 ∣ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)}
53, 4eqtri 2632 . . . 4 (𝐾𝐿) = {𝑥𝐵 ∣ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)}
6 ablfacrp.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐺)
7 ablfacrp.o . . . . . . . . . . . . . 14 𝑂 = (od‘𝐺)
86, 7odcl 17778 . . . . . . . . . . . . 13 (𝑥𝐵 → (𝑂𝑥) ∈ ℕ0)
98adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → (𝑂𝑥) ∈ ℕ0)
109nn0zd 11356 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (𝑂𝑥) ∈ ℤ)
11 ablfacrp.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
1211nnzd 11357 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
1312adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → 𝑀 ∈ ℤ)
14 ablfacrp.n . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
1514nnzd 11357 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
1615adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → 𝑁 ∈ ℤ)
17 dvdsgcd 15099 . . . . . . . . . . 11 (((𝑂𝑥) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁) → (𝑂𝑥) ∥ (𝑀 gcd 𝑁)))
1810, 13, 16, 17syl3anc 1318 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁) → (𝑂𝑥) ∥ (𝑀 gcd 𝑁)))
19183impia 1253 . . . . . . . . 9 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → (𝑂𝑥) ∥ (𝑀 gcd 𝑁))
20 ablfacrp.1 . . . . . . . . . 10 (𝜑 → (𝑀 gcd 𝑁) = 1)
21203ad2ant1 1075 . . . . . . . . 9 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → (𝑀 gcd 𝑁) = 1)
2219, 21breqtrd 4609 . . . . . . . 8 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → (𝑂𝑥) ∥ 1)
23 simp2 1055 . . . . . . . . 9 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → 𝑥𝐵)
24 dvds1 14879 . . . . . . . . 9 ((𝑂𝑥) ∈ ℕ0 → ((𝑂𝑥) ∥ 1 ↔ (𝑂𝑥) = 1))
2523, 8, 243syl 18 . . . . . . . 8 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → ((𝑂𝑥) ∥ 1 ↔ (𝑂𝑥) = 1))
2622, 25mpbid 221 . . . . . . 7 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → (𝑂𝑥) = 1)
27 ablfacrp.g . . . . . . . . . 10 (𝜑𝐺 ∈ Abel)
28 ablgrp 18021 . . . . . . . . . 10 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
2927, 28syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
30293ad2ant1 1075 . . . . . . . 8 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → 𝐺 ∈ Grp)
31 ablfacrp.z . . . . . . . . 9 0 = (0g𝐺)
327, 31, 6odeq1 17800 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((𝑂𝑥) = 1 ↔ 𝑥 = 0 ))
3330, 23, 32syl2anc 691 . . . . . . 7 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → ((𝑂𝑥) = 1 ↔ 𝑥 = 0 ))
3426, 33mpbid 221 . . . . . 6 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → 𝑥 = 0 )
35 velsn 4141 . . . . . 6 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
3634, 35sylibr 223 . . . . 5 ((𝜑𝑥𝐵 ∧ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)) → 𝑥 ∈ { 0 })
3736rabssdv 3645 . . . 4 (𝜑 → {𝑥𝐵 ∣ ((𝑂𝑥) ∥ 𝑀 ∧ (𝑂𝑥) ∥ 𝑁)} ⊆ { 0 })
385, 37syl5eqss 3612 . . 3 (𝜑 → (𝐾𝐿) ⊆ { 0 })
397, 6oddvdssubg 18081 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
4027, 12, 39syl2anc 691 . . . . . . 7 (𝜑 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
411, 40syl5eqel 2692 . . . . . 6 (𝜑𝐾 ∈ (SubGrp‘𝐺))
4231subg0cl 17425 . . . . . 6 (𝐾 ∈ (SubGrp‘𝐺) → 0𝐾)
4341, 42syl 17 . . . . 5 (𝜑0𝐾)
447, 6oddvdssubg 18081 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
4527, 15, 44syl2anc 691 . . . . . . 7 (𝜑 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
462, 45syl5eqel 2692 . . . . . 6 (𝜑𝐿 ∈ (SubGrp‘𝐺))
4731subg0cl 17425 . . . . . 6 (𝐿 ∈ (SubGrp‘𝐺) → 0𝐿)
4846, 47syl 17 . . . . 5 (𝜑0𝐿)
4943, 48elind 3760 . . . 4 (𝜑0 ∈ (𝐾𝐿))
5049snssd 4281 . . 3 (𝜑 → { 0 } ⊆ (𝐾𝐿))
5138, 50eqssd 3585 . 2 (𝜑 → (𝐾𝐿) = { 0 })
52 ablfacrp.s . . . . . 6 = (LSSum‘𝐺)
5352lsmsubg2 18085 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐿 ∈ (SubGrp‘𝐺)) → (𝐾 𝐿) ∈ (SubGrp‘𝐺))
5427, 41, 46, 53syl3anc 1318 . . . 4 (𝜑 → (𝐾 𝐿) ∈ (SubGrp‘𝐺))
556subgss 17418 . . . 4 ((𝐾 𝐿) ∈ (SubGrp‘𝐺) → (𝐾 𝐿) ⊆ 𝐵)
5654, 55syl 17 . . 3 (𝜑 → (𝐾 𝐿) ⊆ 𝐵)
57 eqid 2610 . . . . . . . 8 (.g𝐺) = (.g𝐺)
586, 57mulg1 17371 . . . . . . 7 (𝑔𝐵 → (1(.g𝐺)𝑔) = 𝑔)
5958adantl 481 . . . . . 6 ((𝜑𝑔𝐵) → (1(.g𝐺)𝑔) = 𝑔)
60 bezout 15098 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)))
6112, 15, 60syl2anc 691 . . . . . . . 8 (𝜑 → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)))
6261adantr 480 . . . . . . 7 ((𝜑𝑔𝐵) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)))
6320ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 gcd 𝑁) = 1)
6463eqeq1d 2612 . . . . . . . . 9 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) ↔ 1 = ((𝑀 · 𝑎) + (𝑁 · 𝑏))))
6512ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑀 ∈ ℤ)
66 simprl 790 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℤ)
6765, 66zmulcld 11364 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 · 𝑎) ∈ ℤ)
6867zcnd 11359 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 · 𝑎) ∈ ℂ)
6915ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑁 ∈ ℤ)
70 simprr 792 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℤ)
7169, 70zmulcld 11364 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑁 · 𝑏) ∈ ℤ)
7271zcnd 11359 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑁 · 𝑏) ∈ ℂ)
7368, 72addcomd 10117 . . . . . . . . . . . . 13 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑎) + (𝑁 · 𝑏)) = ((𝑁 · 𝑏) + (𝑀 · 𝑎)))
7473oveq1d 6564 . . . . . . . . . . . 12 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g𝐺)𝑔) = (((𝑁 · 𝑏) + (𝑀 · 𝑎))(.g𝐺)𝑔))
7529ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐺 ∈ Grp)
76 simplr 788 . . . . . . . . . . . . 13 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑔𝐵)
77 eqid 2610 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
786, 57, 77mulgdir 17396 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ ((𝑁 · 𝑏) ∈ ℤ ∧ (𝑀 · 𝑎) ∈ ℤ ∧ 𝑔𝐵)) → (((𝑁 · 𝑏) + (𝑀 · 𝑎))(.g𝐺)𝑔) = (((𝑁 · 𝑏)(.g𝐺)𝑔)(+g𝐺)((𝑀 · 𝑎)(.g𝐺)𝑔)))
7975, 71, 67, 76, 78syl13anc 1320 . . . . . . . . . . . 12 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑁 · 𝑏) + (𝑀 · 𝑎))(.g𝐺)𝑔) = (((𝑁 · 𝑏)(.g𝐺)𝑔)(+g𝐺)((𝑀 · 𝑎)(.g𝐺)𝑔)))
8074, 79eqtrd 2644 . . . . . . . . . . 11 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g𝐺)𝑔) = (((𝑁 · 𝑏)(.g𝐺)𝑔)(+g𝐺)((𝑀 · 𝑎)(.g𝐺)𝑔)))
8141ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐾 ∈ (SubGrp‘𝐺))
8246ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐿 ∈ (SubGrp‘𝐺))
836, 57mulgcl 17382 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (𝑁 · 𝑏) ∈ ℤ ∧ 𝑔𝐵) → ((𝑁 · 𝑏)(.g𝐺)𝑔) ∈ 𝐵)
8475, 71, 76, 83syl3anc 1318 . . . . . . . . . . . . 13 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑁 · 𝑏)(.g𝐺)𝑔) ∈ 𝐵)
85 ablfacrp.2 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (#‘𝐵) = (𝑀 · 𝑁))
8611, 14nnmulcld 10945 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑀 · 𝑁) ∈ ℕ)
8786nnnn0d 11228 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑀 · 𝑁) ∈ ℕ0)
8885, 87eqeltrd 2688 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (#‘𝐵) ∈ ℕ0)
89 fvex 6113 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝐺) ∈ V
906, 89eqeltri 2684 . . . . . . . . . . . . . . . . . . . . 21 𝐵 ∈ V
91 hashclb 13011 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (#‘𝐵) ∈ ℕ0))
9290, 91ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ Fin ↔ (#‘𝐵) ∈ ℕ0)
9388, 92sylibr 223 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ Fin)
9493ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐵 ∈ Fin)
956, 7oddvds2 17806 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑔𝐵) → (𝑂𝑔) ∥ (#‘𝐵))
9675, 94, 76, 95syl3anc 1318 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∥ (#‘𝐵))
9785ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (#‘𝐵) = (𝑀 · 𝑁))
9896, 97breqtrd 4609 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∥ (𝑀 · 𝑁))
996, 7odcl 17778 . . . . . . . . . . . . . . . . . . 19 (𝑔𝐵 → (𝑂𝑔) ∈ ℕ0)
10099ad2antlr 759 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∈ ℕ0)
101100nn0zd 11356 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∈ ℤ)
10265, 69zmulcld 11364 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑀 · 𝑁) ∈ ℤ)
103 dvdsmultr1 14857 . . . . . . . . . . . . . . . . 17 (((𝑂𝑔) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑂𝑔) ∥ (𝑀 · 𝑁) → (𝑂𝑔) ∥ ((𝑀 · 𝑁) · 𝑏)))
104101, 102, 70, 103syl3anc 1318 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑂𝑔) ∥ (𝑀 · 𝑁) → (𝑂𝑔) ∥ ((𝑀 · 𝑁) · 𝑏)))
10598, 104mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∥ ((𝑀 · 𝑁) · 𝑏))
10665zcnd 11359 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑀 ∈ ℂ)
10769zcnd 11359 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑁 ∈ ℂ)
10870zcnd 11359 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℂ)
109106, 107, 108mulassd 9942 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑁) · 𝑏) = (𝑀 · (𝑁 · 𝑏)))
110105, 109breqtrd 4609 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∥ (𝑀 · (𝑁 · 𝑏)))
1116, 7, 57odmulgid 17794 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ 𝑔𝐵 ∧ (𝑁 · 𝑏) ∈ ℤ) ∧ 𝑀 ∈ ℤ) → ((𝑂‘((𝑁 · 𝑏)(.g𝐺)𝑔)) ∥ 𝑀 ↔ (𝑂𝑔) ∥ (𝑀 · (𝑁 · 𝑏))))
11275, 76, 71, 65, 111syl31anc 1321 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑂‘((𝑁 · 𝑏)(.g𝐺)𝑔)) ∥ 𝑀 ↔ (𝑂𝑔) ∥ (𝑀 · (𝑁 · 𝑏))))
113110, 112mpbird 246 . . . . . . . . . . . . 13 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘((𝑁 · 𝑏)(.g𝐺)𝑔)) ∥ 𝑀)
114 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑥 = ((𝑁 · 𝑏)(.g𝐺)𝑔) → (𝑂𝑥) = (𝑂‘((𝑁 · 𝑏)(.g𝐺)𝑔)))
115114breq1d 4593 . . . . . . . . . . . . . 14 (𝑥 = ((𝑁 · 𝑏)(.g𝐺)𝑔) → ((𝑂𝑥) ∥ 𝑀 ↔ (𝑂‘((𝑁 · 𝑏)(.g𝐺)𝑔)) ∥ 𝑀))
116115, 1elrab2 3333 . . . . . . . . . . . . 13 (((𝑁 · 𝑏)(.g𝐺)𝑔) ∈ 𝐾 ↔ (((𝑁 · 𝑏)(.g𝐺)𝑔) ∈ 𝐵 ∧ (𝑂‘((𝑁 · 𝑏)(.g𝐺)𝑔)) ∥ 𝑀))
11784, 113, 116sylanbrc 695 . . . . . . . . . . . 12 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑁 · 𝑏)(.g𝐺)𝑔) ∈ 𝐾)
1186, 57mulgcl 17382 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑎) ∈ ℤ ∧ 𝑔𝐵) → ((𝑀 · 𝑎)(.g𝐺)𝑔) ∈ 𝐵)
11975, 67, 76, 118syl3anc 1318 . . . . . . . . . . . . 13 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑎)(.g𝐺)𝑔) ∈ 𝐵)
120 dvdsmultr1 14857 . . . . . . . . . . . . . . . . 17 (((𝑂𝑔) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ ∧ 𝑎 ∈ ℤ) → ((𝑂𝑔) ∥ (𝑀 · 𝑁) → (𝑂𝑔) ∥ ((𝑀 · 𝑁) · 𝑎)))
121101, 102, 66, 120syl3anc 1318 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑂𝑔) ∥ (𝑀 · 𝑁) → (𝑂𝑔) ∥ ((𝑀 · 𝑁) · 𝑎)))
12298, 121mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∥ ((𝑀 · 𝑁) · 𝑎))
123 zcn 11259 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
124123ad2antrl 760 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℂ)
125 mulass 9903 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑀 · 𝑁) · 𝑎) = (𝑀 · (𝑁 · 𝑎)))
126 mul12 10081 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (𝑀 · (𝑁 · 𝑎)) = (𝑁 · (𝑀 · 𝑎)))
127125, 126eqtrd 2644 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝑀 · 𝑁) · 𝑎) = (𝑁 · (𝑀 · 𝑎)))
128106, 107, 124, 127syl3anc 1318 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑁) · 𝑎) = (𝑁 · (𝑀 · 𝑎)))
129122, 128breqtrd 4609 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂𝑔) ∥ (𝑁 · (𝑀 · 𝑎)))
1306, 7, 57odmulgid 17794 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ 𝑔𝐵 ∧ (𝑀 · 𝑎) ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝑂‘((𝑀 · 𝑎)(.g𝐺)𝑔)) ∥ 𝑁 ↔ (𝑂𝑔) ∥ (𝑁 · (𝑀 · 𝑎))))
13175, 76, 67, 69, 130syl31anc 1321 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑂‘((𝑀 · 𝑎)(.g𝐺)𝑔)) ∥ 𝑁 ↔ (𝑂𝑔) ∥ (𝑁 · (𝑀 · 𝑎))))
132129, 131mpbird 246 . . . . . . . . . . . . 13 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑂‘((𝑀 · 𝑎)(.g𝐺)𝑔)) ∥ 𝑁)
133 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑥 = ((𝑀 · 𝑎)(.g𝐺)𝑔) → (𝑂𝑥) = (𝑂‘((𝑀 · 𝑎)(.g𝐺)𝑔)))
134133breq1d 4593 . . . . . . . . . . . . . 14 (𝑥 = ((𝑀 · 𝑎)(.g𝐺)𝑔) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂‘((𝑀 · 𝑎)(.g𝐺)𝑔)) ∥ 𝑁))
135134, 2elrab2 3333 . . . . . . . . . . . . 13 (((𝑀 · 𝑎)(.g𝐺)𝑔) ∈ 𝐿 ↔ (((𝑀 · 𝑎)(.g𝐺)𝑔) ∈ 𝐵 ∧ (𝑂‘((𝑀 · 𝑎)(.g𝐺)𝑔)) ∥ 𝑁))
136119, 132, 135sylanbrc 695 . . . . . . . . . . . 12 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 · 𝑎)(.g𝐺)𝑔) ∈ 𝐿)
13777, 52lsmelvali 17888 . . . . . . . . . . . 12 (((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐿 ∈ (SubGrp‘𝐺)) ∧ (((𝑁 · 𝑏)(.g𝐺)𝑔) ∈ 𝐾 ∧ ((𝑀 · 𝑎)(.g𝐺)𝑔) ∈ 𝐿)) → (((𝑁 · 𝑏)(.g𝐺)𝑔)(+g𝐺)((𝑀 · 𝑎)(.g𝐺)𝑔)) ∈ (𝐾 𝐿))
13881, 82, 117, 136, 137syl22anc 1319 . . . . . . . . . . 11 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑁 · 𝑏)(.g𝐺)𝑔)(+g𝐺)((𝑀 · 𝑎)(.g𝐺)𝑔)) ∈ (𝐾 𝐿))
13980, 138eqeltrd 2688 . . . . . . . . . 10 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g𝐺)𝑔) ∈ (𝐾 𝐿))
140 oveq1 6556 . . . . . . . . . . 11 (1 = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g𝐺)𝑔) = (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g𝐺)𝑔))
141140eleq1d 2672 . . . . . . . . . 10 (1 = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → ((1(.g𝐺)𝑔) ∈ (𝐾 𝐿) ↔ (((𝑀 · 𝑎) + (𝑁 · 𝑏))(.g𝐺)𝑔) ∈ (𝐾 𝐿)))
142139, 141syl5ibrcom 236 . . . . . . . . 9 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (1 = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g𝐺)𝑔) ∈ (𝐾 𝐿)))
14364, 142sylbid 229 . . . . . . . 8 (((𝜑𝑔𝐵) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g𝐺)𝑔) ∈ (𝐾 𝐿)))
144143rexlimdvva 3020 . . . . . . 7 ((𝜑𝑔𝐵) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑎) + (𝑁 · 𝑏)) → (1(.g𝐺)𝑔) ∈ (𝐾 𝐿)))
14562, 144mpd 15 . . . . . 6 ((𝜑𝑔𝐵) → (1(.g𝐺)𝑔) ∈ (𝐾 𝐿))
14659, 145eqeltrrd 2689 . . . . 5 ((𝜑𝑔𝐵) → 𝑔 ∈ (𝐾 𝐿))
147146ex 449 . . . 4 (𝜑 → (𝑔𝐵𝑔 ∈ (𝐾 𝐿)))
148147ssrdv 3574 . . 3 (𝜑𝐵 ⊆ (𝐾 𝐿))
14956, 148eqssd 3585 . 2 (𝜑 → (𝐾 𝐿) = 𝐵)
15051, 149jca 553 1 (𝜑 → ((𝐾𝐿) = { 0 } ∧ (𝐾 𝐿) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  {crab 2900  Vcvv 3173  cin 3539  wss 3540  {csn 4125   class class class wbr 4583  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  1c1 9816   + caddc 9818   · cmul 9820  cn 10897  0cn0 11169  cz 11254  #chash 12979  cdvds 14821   gcd cgcd 15054  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Grpcgrp 17245  .gcmg 17363  SubGrpcsubg 17411  odcod 17767  LSSumclsm 17872  Abelcabl 18017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-gcd 15055  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-eqg 17416  df-cntz 17573  df-od 17771  df-lsm 17874  df-cmn 18018  df-abl 18019
This theorem is referenced by:  ablfacrp2  18289  ablfac1b  18292
  Copyright terms: Public domain W3C validator