MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1eulem Structured version   Visualization version   GIF version

Theorem ablfac1eulem 18294
Description: Lemma for ablfac1eu 18295. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
ablfac1c.d 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (#‘𝐵)}
ablfac1.2 (𝜑𝐷𝐴)
ablfac1eu.1 (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵))
ablfac1eu.2 (𝜑 → dom 𝑇 = 𝐴)
ablfac1eu.3 ((𝜑𝑞𝐴) → 𝐶 ∈ ℕ0)
ablfac1eu.4 ((𝜑𝑞𝐴) → (#‘(𝑇𝑞)) = (𝑞𝐶))
ablfac1eulem.1 (𝜑𝑃 ∈ ℙ)
ablfac1eulem.2 (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
ablfac1eulem (𝜑 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))
Distinct variable groups:   𝑞,𝑝,𝑤,𝑥,𝐵   𝐷,𝑝,𝑞,𝑥   𝜑,𝑝,𝑞,𝑤,𝑥   𝑆,𝑞   𝐴,𝑝,𝑞,𝑥   𝑂,𝑝,𝑞,𝑥   𝑃,𝑝,𝑞,𝑥   𝑇,𝑞,𝑥   𝐺,𝑝,𝑞,𝑥
Allowed substitution hints:   𝐴(𝑤)   𝐶(𝑥,𝑤,𝑞,𝑝)   𝐷(𝑤)   𝑃(𝑤)   𝑆(𝑥,𝑤,𝑝)   𝑇(𝑤,𝑝)   𝐺(𝑤)   𝑂(𝑤)

Proof of Theorem ablfac1eulem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3587 . 2 𝐴𝐴
2 ablfac1eulem.2 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3589 . . . . . 6 (𝑦 = ∅ → (𝑦𝐴 ↔ ∅ ⊆ 𝐴))
4 difeq1 3683 . . . . . . . . . . . . 13 (𝑦 = ∅ → (𝑦 ∖ {𝑃}) = (∅ ∖ {𝑃}))
5 0dif 3929 . . . . . . . . . . . . 13 (∅ ∖ {𝑃}) = ∅
64, 5syl6eq 2660 . . . . . . . . . . . 12 (𝑦 = ∅ → (𝑦 ∖ {𝑃}) = ∅)
76reseq2d 5317 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑇 ↾ (𝑦 ∖ {𝑃})) = (𝑇 ↾ ∅))
8 res0 5321 . . . . . . . . . . 11 (𝑇 ↾ ∅) = ∅
97, 8syl6eq 2660 . . . . . . . . . 10 (𝑦 = ∅ → (𝑇 ↾ (𝑦 ∖ {𝑃})) = ∅)
109oveq2d 6565 . . . . . . . . 9 (𝑦 = ∅ → (𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))) = (𝐺 DProd ∅))
1110fveq2d 6107 . . . . . . . 8 (𝑦 = ∅ → (#‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) = (#‘(𝐺 DProd ∅)))
1211breq2d 4595 . . . . . . 7 (𝑦 = ∅ → (𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ 𝑃 ∥ (#‘(𝐺 DProd ∅))))
1312notbid 307 . . . . . 6 (𝑦 = ∅ → (¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ ¬ 𝑃 ∥ (#‘(𝐺 DProd ∅))))
143, 13imbi12d 333 . . . . 5 (𝑦 = ∅ → ((𝑦𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))))) ↔ (∅ ⊆ 𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd ∅)))))
1514imbi2d 329 . . . 4 (𝑦 = ∅ → ((𝜑 → (𝑦𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))))) ↔ (𝜑 → (∅ ⊆ 𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd ∅))))))
16 sseq1 3589 . . . . . 6 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
17 difeq1 3683 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 ∖ {𝑃}) = (𝑧 ∖ {𝑃}))
1817reseq2d 5317 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑇 ↾ (𝑦 ∖ {𝑃})) = (𝑇 ↾ (𝑧 ∖ {𝑃})))
1918oveq2d 6565 . . . . . . . . 9 (𝑦 = 𝑧 → (𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))
2019fveq2d 6107 . . . . . . . 8 (𝑦 = 𝑧 → (#‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) = (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))))
2120breq2d 4595 . . . . . . 7 (𝑦 = 𝑧 → (𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
2221notbid 307 . . . . . 6 (𝑦 = 𝑧 → (¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
2316, 22imbi12d 333 . . . . 5 (𝑦 = 𝑧 → ((𝑦𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))))) ↔ (𝑧𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))))))
2423imbi2d 329 . . . 4 (𝑦 = 𝑧 → ((𝜑 → (𝑦𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))))) ↔ (𝜑 → (𝑧𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))))
25 sseq1 3589 . . . . . 6 (𝑦 = (𝑧 ∪ {𝑞}) → (𝑦𝐴 ↔ (𝑧 ∪ {𝑞}) ⊆ 𝐴))
26 difeq1 3683 . . . . . . . . . . 11 (𝑦 = (𝑧 ∪ {𝑞}) → (𝑦 ∖ {𝑃}) = ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
2726reseq2d 5317 . . . . . . . . . 10 (𝑦 = (𝑧 ∪ {𝑞}) → (𝑇 ↾ (𝑦 ∖ {𝑃})) = (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))
2827oveq2d 6565 . . . . . . . . 9 (𝑦 = (𝑧 ∪ {𝑞}) → (𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))
2928fveq2d 6107 . . . . . . . 8 (𝑦 = (𝑧 ∪ {𝑞}) → (#‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) = (#‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))
3029breq2d 4595 . . . . . . 7 (𝑦 = (𝑧 ∪ {𝑞}) → (𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))
3130notbid 307 . . . . . 6 (𝑦 = (𝑧 ∪ {𝑞}) → (¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))
3225, 31imbi12d 333 . . . . 5 (𝑦 = (𝑧 ∪ {𝑞}) → ((𝑦𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))))) ↔ ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))))
3332imbi2d 329 . . . 4 (𝑦 = (𝑧 ∪ {𝑞}) → ((𝜑 → (𝑦𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))))) ↔ (𝜑 → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))))
34 sseq1 3589 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝐴𝐴𝐴))
35 difeq1 3683 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦 ∖ {𝑃}) = (𝐴 ∖ {𝑃}))
3635reseq2d 5317 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑇 ↾ (𝑦 ∖ {𝑃})) = (𝑇 ↾ (𝐴 ∖ {𝑃})))
3736oveq2d 6565 . . . . . . . . 9 (𝑦 = 𝐴 → (𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))
3837fveq2d 6107 . . . . . . . 8 (𝑦 = 𝐴 → (#‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) = (#‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))
3938breq2d 4595 . . . . . . 7 (𝑦 = 𝐴 → (𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))))
4039notbid 307 . . . . . 6 (𝑦 = 𝐴 → (¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))))
4134, 40imbi12d 333 . . . . 5 (𝑦 = 𝐴 → ((𝑦𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))))) ↔ (𝐴𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))))
4241imbi2d 329 . . . 4 (𝑦 = 𝐴 → ((𝜑 → (𝑦𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))))) ↔ (𝜑 → (𝐴𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))))))
43 ablfac1eulem.1 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
44 nprmdvds1 15256 . . . . . . 7 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
4543, 44syl 17 . . . . . 6 (𝜑 → ¬ 𝑃 ∥ 1)
46 ablfac1.g . . . . . . . . . . 11 (𝜑𝐺 ∈ Abel)
47 ablgrp 18021 . . . . . . . . . . 11 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
48 eqid 2610 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
4948dprd0 18253 . . . . . . . . . . 11 (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
5046, 47, 493syl 18 . . . . . . . . . 10 (𝜑 → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
5150simprd 478 . . . . . . . . 9 (𝜑 → (𝐺 DProd ∅) = {(0g𝐺)})
5251fveq2d 6107 . . . . . . . 8 (𝜑 → (#‘(𝐺 DProd ∅)) = (#‘{(0g𝐺)}))
53 fvex 6113 . . . . . . . . 9 (0g𝐺) ∈ V
54 hashsng 13020 . . . . . . . . 9 ((0g𝐺) ∈ V → (#‘{(0g𝐺)}) = 1)
5553, 54ax-mp 5 . . . . . . . 8 (#‘{(0g𝐺)}) = 1
5652, 55syl6eq 2660 . . . . . . 7 (𝜑 → (#‘(𝐺 DProd ∅)) = 1)
5756breq2d 4595 . . . . . 6 (𝜑 → (𝑃 ∥ (#‘(𝐺 DProd ∅)) ↔ 𝑃 ∥ 1))
5845, 57mtbird 314 . . . . 5 (𝜑 → ¬ 𝑃 ∥ (#‘(𝐺 DProd ∅)))
5958a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd ∅))))
60 ssun1 3738 . . . . . . . . . 10 𝑧 ⊆ (𝑧 ∪ {𝑞})
61 sstr 3576 . . . . . . . . . 10 ((𝑧 ⊆ (𝑧 ∪ {𝑞}) ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴) → 𝑧𝐴)
6260, 61mpan 702 . . . . . . . . 9 ((𝑧 ∪ {𝑞}) ⊆ 𝐴𝑧𝐴)
6362imim1i 61 . . . . . . . 8 ((𝑧𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
64 ablfac1eu.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵))
6564simpld 474 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺dom DProd 𝑇)
66 ablfac1eu.2 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝑇 = 𝐴)
6765, 66dprdf2 18229 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇:𝐴⟶(SubGrp‘𝐺))
6867adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝑇:𝐴⟶(SubGrp‘𝐺))
69 simprr 792 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑧 ∪ {𝑞}) ⊆ 𝐴)
7069ssdifssd 3710 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑧 ∪ {𝑞}) ∖ {𝑃}) ⊆ 𝐴)
7168, 70fssresd 5984 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})):((𝑧 ∪ {𝑞}) ∖ {𝑃})⟶(SubGrp‘𝐺))
72 simprl 790 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ¬ 𝑞𝑧)
73 disjsn 4192 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∩ {𝑞}) = ∅ ↔ ¬ 𝑞𝑧)
7472, 73sylibr 223 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑧 ∩ {𝑞}) = ∅)
7574difeq1d 3689 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑧 ∩ {𝑞}) ∖ {𝑃}) = (∅ ∖ {𝑃}))
76 difindir 3841 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∩ {𝑞}) ∖ {𝑃}) = ((𝑧 ∖ {𝑃}) ∩ ({𝑞} ∖ {𝑃}))
7775, 76, 53eqtr3g 2667 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑧 ∖ {𝑃}) ∩ ({𝑞} ∖ {𝑃})) = ∅)
78 difundir 3839 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∪ {𝑞}) ∖ {𝑃}) = ((𝑧 ∖ {𝑃}) ∪ ({𝑞} ∖ {𝑃}))
7978a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑧 ∪ {𝑞}) ∖ {𝑃}) = ((𝑧 ∖ {𝑃}) ∪ ({𝑞} ∖ {𝑃})))
80 eqid 2610 . . . . . . . . . . . . . . . . 17 (LSSum‘𝐺) = (LSSum‘𝐺)
8165adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐺dom DProd 𝑇)
8266adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → dom 𝑇 = 𝐴)
8381, 82, 70dprdres 18250 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺dom DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ∧ (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))) ⊆ (𝐺 DProd 𝑇)))
8483simpld 474 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐺dom DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))
8571, 77, 79, 80, 84dprdsplit 18270 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))) = ((𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))(LSSum‘𝐺)(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))))
8685fveq2d 6107 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (#‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) = (#‘((𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))(LSSum‘𝐺)(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))))))
87 eqid 2610 . . . . . . . . . . . . . . . 16 (Cntz‘𝐺) = (Cntz‘𝐺)
88 fdm 5964 . . . . . . . . . . . . . . . . . . . 20 ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})):((𝑧 ∪ {𝑞}) ∖ {𝑃})⟶(SubGrp‘𝐺) → dom (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) = ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
8971, 88syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → dom (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) = ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
90 ssdif 3707 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ⊆ (𝑧 ∪ {𝑞}) → (𝑧 ∖ {𝑃}) ⊆ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
9160, 90mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑧 ∖ {𝑃}) ⊆ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
9284, 89, 91dprdres 18250 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})) ∧ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ⊆ (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))
9392simpld 474 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))
94 dprdsubg 18246 . . . . . . . . . . . . . . . . 17 (𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∈ (SubGrp‘𝐺))
9593, 94syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∈ (SubGrp‘𝐺))
96 ssun2 3739 . . . . . . . . . . . . . . . . . . . 20 {𝑞} ⊆ (𝑧 ∪ {𝑞})
97 ssdif 3707 . . . . . . . . . . . . . . . . . . . 20 ({𝑞} ⊆ (𝑧 ∪ {𝑞}) → ({𝑞} ∖ {𝑃}) ⊆ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
9896, 97mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ({𝑞} ∖ {𝑃}) ⊆ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
9984, 89, 98dprdres 18250 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})) ∧ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ⊆ (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))
10099simpld 474 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))
101 dprdsubg 18246 . . . . . . . . . . . . . . . . 17 (𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ∈ (SubGrp‘𝐺))
102100, 101syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ∈ (SubGrp‘𝐺))
10384, 89, 91, 98, 77, 48dprddisj2 18261 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∩ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))) = {(0g𝐺)})
10484, 89, 91, 98, 77, 87dprdcntz2 18260 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))))
105 ablfac1.f . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ Fin)
106105adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐵 ∈ Fin)
107 ablfac1.b . . . . . . . . . . . . . . . . . 18 𝐵 = (Base‘𝐺)
108107dprdssv 18238 . . . . . . . . . . . . . . . . 17 (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ⊆ 𝐵
109 ssfi 8065 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ Fin ∧ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ⊆ 𝐵) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∈ Fin)
110106, 108, 109sylancl 693 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∈ Fin)
111107dprdssv 18238 . . . . . . . . . . . . . . . . 17 (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ⊆ 𝐵
112 ssfi 8065 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ Fin ∧ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ⊆ 𝐵) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin)
113106, 111, 112sylancl 693 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin)
11480, 48, 87, 95, 102, 103, 104, 110, 113lsmhash 17941 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (#‘((𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))(LSSum‘𝐺)(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))))) = ((#‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))) · (#‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))))))
11591resabs1d 5348 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})) = (𝑇 ↾ (𝑧 ∖ {𝑃})))
116115oveq2d 6565 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))
117116fveq2d 6107 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (#‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))) = (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))))
11898resabs1d 5348 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})) = (𝑇 ↾ ({𝑞} ∖ {𝑃})))
119118oveq2d 6565 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))
120119fveq2d 6107 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (#‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))) = (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))
121117, 120oveq12d 6567 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((#‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))) · (#‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))))) = ((#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))))
12286, 114, 1213eqtrd 2648 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (#‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) = ((#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))))
123122breq2d 4595 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) ↔ 𝑃 ∥ ((#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))))
12443adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝑃 ∈ ℙ)
125107dprdssv 18238 . . . . . . . . . . . . . . . . 17 (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ⊆ 𝐵
126 ssfi 8065 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ Fin ∧ (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ⊆ 𝐵) → (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ∈ Fin)
127106, 125, 126sylancl 693 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ∈ Fin)
128 hashcl 13009 . . . . . . . . . . . . . . . 16 ((𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ∈ Fin → (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∈ ℕ0)
129127, 128syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∈ ℕ0)
130129nn0zd 11356 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∈ ℤ)
131107dprdssv 18238 . . . . . . . . . . . . . . . . 17 (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ⊆ 𝐵
132 ssfi 8065 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ Fin ∧ (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ⊆ 𝐵) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin)
133106, 131, 132sylancl 693 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin)
134 hashcl 13009 . . . . . . . . . . . . . . . 16 ((𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin → (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ∈ ℕ0)
135133, 134syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ∈ ℕ0)
136135nn0zd 11356 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ∈ ℤ)
137 euclemma 15263 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∈ ℤ ∧ (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ∈ ℤ) → (𝑃 ∥ ((#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))) ↔ (𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))))
138124, 130, 136, 137syl3anc 1318 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ ((#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))) ↔ (𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))))
139123, 138bitrd 267 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) ↔ (𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))))
14045ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → ¬ 𝑃 ∥ 1)
141 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → 𝑞 = 𝑃)
142141sneqd 4137 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → {𝑞} = {𝑃})
143142difeq1d 3689 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → ({𝑞} ∖ {𝑃}) = ({𝑃} ∖ {𝑃}))
144 difid 3902 . . . . . . . . . . . . . . . . . . . . . . 23 ({𝑃} ∖ {𝑃}) = ∅
145143, 144syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → ({𝑞} ∖ {𝑃}) = ∅)
146145reseq2d 5317 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝑇 ↾ ({𝑞} ∖ {𝑃})) = (𝑇 ↾ ∅))
147146, 8syl6eq 2660 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝑇 ↾ ({𝑞} ∖ {𝑃})) = ∅)
148147oveq2d 6565 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) = (𝐺 DProd ∅))
14951ad2antrr 758 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝐺 DProd ∅) = {(0g𝐺)})
150148, 149eqtrd 2644 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) = {(0g𝐺)})
151150fveq2d 6107 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) = (#‘{(0g𝐺)}))
152151, 55syl6eq 2660 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) = 1)
153152breq2d 4595 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ↔ 𝑃 ∥ 1))
154140, 153mtbird 314 . . . . . . . . . . . . . 14 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))
155 ablfac1.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ⊆ ℙ)
156155adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐴 ⊆ ℙ)
15769unssbd 3753 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → {𝑞} ⊆ 𝐴)
158 vex 3176 . . . . . . . . . . . . . . . . . . . . . 22 𝑞 ∈ V
159158snss 4259 . . . . . . . . . . . . . . . . . . . . 21 (𝑞𝐴 ↔ {𝑞} ⊆ 𝐴)
160157, 159sylibr 223 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝑞𝐴)
161156, 160sseldd 3569 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝑞 ∈ ℙ)
162 ablfac1eu.3 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐴) → 𝐶 ∈ ℕ0)
163160, 162syldan 486 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐶 ∈ ℕ0)
164 prmdvdsexpr 15267 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝐶 ∈ ℕ0) → (𝑃 ∥ (𝑞𝐶) → 𝑃 = 𝑞))
165124, 161, 163, 164syl3anc 1318 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (𝑞𝐶) → 𝑃 = 𝑞))
166 eqcom 2617 . . . . . . . . . . . . . . . . . 18 (𝑃 = 𝑞𝑞 = 𝑃)
167165, 166syl6ib 240 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (𝑞𝐶) → 𝑞 = 𝑃))
168167necon3ad 2795 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑞𝑃 → ¬ 𝑃 ∥ (𝑞𝐶)))
169168imp 444 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → ¬ 𝑃 ∥ (𝑞𝐶))
170 disjsn2 4193 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝑃 → ({𝑞} ∩ {𝑃}) = ∅)
171170adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → ({𝑞} ∩ {𝑃}) = ∅)
172 disj3 3973 . . . . . . . . . . . . . . . . . . . . . 22 (({𝑞} ∩ {𝑃}) = ∅ ↔ {𝑞} = ({𝑞} ∖ {𝑃}))
173171, 172sylib 207 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → {𝑞} = ({𝑞} ∖ {𝑃}))
174173reseq2d 5317 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝑇 ↾ {𝑞}) = (𝑇 ↾ ({𝑞} ∖ {𝑃})))
175174oveq2d 6565 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝐺 DProd (𝑇 ↾ {𝑞})) = (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))
17665ad2antrr 758 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → 𝐺dom DProd 𝑇)
17766ad2antrr 758 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → dom 𝑇 = 𝐴)
178160adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → 𝑞𝐴)
179176, 177, 178dpjlem 18273 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝐺 DProd (𝑇 ↾ {𝑞})) = (𝑇𝑞))
180175, 179eqtr3d 2646 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) = (𝑇𝑞))
181180fveq2d 6107 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) = (#‘(𝑇𝑞)))
182 ablfac1eu.4 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞𝐴) → (#‘(𝑇𝑞)) = (𝑞𝐶))
183160, 182syldan 486 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (#‘(𝑇𝑞)) = (𝑞𝐶))
184183adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (#‘(𝑇𝑞)) = (𝑞𝐶))
185181, 184eqtrd 2644 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) = (𝑞𝐶))
186185breq2d 4595 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ↔ 𝑃 ∥ (𝑞𝐶)))
187169, 186mtbird 314 . . . . . . . . . . . . . 14 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))
188154, 187pm2.61dane 2869 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))
189 orel2 397 . . . . . . . . . . . . 13 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) → ((𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))) → 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
190188, 189syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))) → 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
191139, 190sylbid 229 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) → 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
192191con3d 147 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))
193192expr 641 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑞𝑧) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → (¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))))
194193a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑞𝑧) → (((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))))
19563, 194syl5 33 . . . . . . 7 ((𝜑 ∧ ¬ 𝑞𝑧) → ((𝑧𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))))
196195expcom 450 . . . . . 6 𝑞𝑧 → (𝜑 → ((𝑧𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))))
197196adantl 481 . . . . 5 ((𝑧 ∈ Fin ∧ ¬ 𝑞𝑧) → (𝜑 → ((𝑧𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))))
198197a2d 29 . . . 4 ((𝑧 ∈ Fin ∧ ¬ 𝑞𝑧) → ((𝜑 → (𝑧𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))))) → (𝜑 → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))))
19915, 24, 33, 42, 59, 198findcard2s 8086 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))))
2002, 199mpcom 37 . 2 (𝜑 → (𝐴𝐴 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))))
2011, 200mpi 20 1 (𝜑 → ¬ 𝑃 ∥ (#‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  {crab 2900  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125   class class class wbr 4583  cmpt 4643  dom cdm 5038  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  1c1 9816   · cmul 9820  0cn0 11169  cz 11254  cexp 12722  #chash 12979  cdvds 14821  cprime 15223   pCnt cpc 15379  Basecbs 15695  0gc0g 15923  Grpcgrp 17245  SubGrpcsubg 17411  Cntzccntz 17571  odcod 17767  LSSumclsm 17872  Abelcabl 18017   DProd cdprd 18215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-gim 17524  df-cntz 17573  df-oppg 17599  df-lsm 17874  df-pj1 17875  df-cmn 18018  df-abl 18019  df-dprd 18217
This theorem is referenced by:  ablfac1eu  18295
  Copyright terms: Public domain W3C validator