Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdvdsexpr Structured version   Visualization version   GIF version

Theorem prmdvdsexpr 15267
 Description: If a prime divides a nonnegative power of another, then they are equal. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
prmdvdsexpr ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑃 ∥ (𝑄𝑁) → 𝑃 = 𝑄))

Proof of Theorem prmdvdsexpr
StepHypRef Expression
1 elnn0 11171 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 prmdvdsexpb 15266 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝑄𝑁) ↔ 𝑃 = 𝑄))
32biimpd 218 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝑄𝑁) → 𝑃 = 𝑄))
433expia 1259 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 ∈ ℕ → (𝑃 ∥ (𝑄𝑁) → 𝑃 = 𝑄)))
5 prmnn 15226 . . . . . . . . . 10 (𝑄 ∈ ℙ → 𝑄 ∈ ℕ)
65adantl 481 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑄 ∈ ℕ)
76nncnd 10913 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑄 ∈ ℂ)
87exp0d 12864 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑄↑0) = 1)
98breq2d 4595 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 ∥ (𝑄↑0) ↔ 𝑃 ∥ 1))
10 nprmdvds1 15256 . . . . . . . 8 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
1110pm2.21d 117 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 ∥ 1 → 𝑃 = 𝑄))
1211adantr 480 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 ∥ 1 → 𝑃 = 𝑄))
139, 12sylbid 229 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 ∥ (𝑄↑0) → 𝑃 = 𝑄))
14 oveq2 6557 . . . . . . 7 (𝑁 = 0 → (𝑄𝑁) = (𝑄↑0))
1514breq2d 4595 . . . . . 6 (𝑁 = 0 → (𝑃 ∥ (𝑄𝑁) ↔ 𝑃 ∥ (𝑄↑0)))
1615imbi1d 330 . . . . 5 (𝑁 = 0 → ((𝑃 ∥ (𝑄𝑁) → 𝑃 = 𝑄) ↔ (𝑃 ∥ (𝑄↑0) → 𝑃 = 𝑄)))
1713, 16syl5ibrcom 236 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 = 0 → (𝑃 ∥ (𝑄𝑁) → 𝑃 = 𝑄)))
184, 17jaod 394 . . 3 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑃 ∥ (𝑄𝑁) → 𝑃 = 𝑄)))
191, 18syl5bi 231 . 2 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 ∈ ℕ0 → (𝑃 ∥ (𝑄𝑁) → 𝑃 = 𝑄)))
20193impia 1253 1 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑃 ∥ (𝑄𝑁) → 𝑃 = 𝑄))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   class class class wbr 4583  (class class class)co 6549  0cc0 9815  1c1 9816  ℕcn 10897  ℕ0cn0 11169  ↑cexp 12722   ∥ cdvds 14821  ℙcprime 15223 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224 This theorem is referenced by:  pcprmpw2  15424  pcmpt  15434  pgpfi  17843  ablfac1eulem  18294  isppw2  24641
 Copyright terms: Public domain W3C validator