Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prmdvdsexpr | Structured version Visualization version GIF version |
Description: If a prime divides a nonnegative power of another, then they are equal. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
prmdvdsexpr | ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 11171 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | prmdvdsexpb 15266 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝑄↑𝑁) ↔ 𝑃 = 𝑄)) | |
3 | 2 | biimpd 218 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄)) |
4 | 3 | 3expia 1259 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 ∈ ℕ → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄))) |
5 | prmnn 15226 | . . . . . . . . . 10 ⊢ (𝑄 ∈ ℙ → 𝑄 ∈ ℕ) | |
6 | 5 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑄 ∈ ℕ) |
7 | 6 | nncnd 10913 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑄 ∈ ℂ) |
8 | 7 | exp0d 12864 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑄↑0) = 1) |
9 | 8 | breq2d 4595 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 ∥ (𝑄↑0) ↔ 𝑃 ∥ 1)) |
10 | nprmdvds1 15256 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1) | |
11 | 10 | pm2.21d 117 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → (𝑃 ∥ 1 → 𝑃 = 𝑄)) |
12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 ∥ 1 → 𝑃 = 𝑄)) |
13 | 9, 12 | sylbid 229 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 ∥ (𝑄↑0) → 𝑃 = 𝑄)) |
14 | oveq2 6557 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑄↑𝑁) = (𝑄↑0)) | |
15 | 14 | breq2d 4595 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑃 ∥ (𝑄↑𝑁) ↔ 𝑃 ∥ (𝑄↑0))) |
16 | 15 | imbi1d 330 | . . . . 5 ⊢ (𝑁 = 0 → ((𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄) ↔ (𝑃 ∥ (𝑄↑0) → 𝑃 = 𝑄))) |
17 | 13, 16 | syl5ibrcom 236 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 = 0 → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄))) |
18 | 4, 17 | jaod 394 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄))) |
19 | 1, 18 | syl5bi 231 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 ∈ ℕ0 → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄))) |
20 | 19 | 3impia 1253 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 (class class class)co 6549 0cc0 9815 1c1 9816 ℕcn 10897 ℕ0cn0 11169 ↑cexp 12722 ∥ cdvds 14821 ℙcprime 15223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-fl 12455 df-mod 12531 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-dvds 14822 df-gcd 15055 df-prm 15224 |
This theorem is referenced by: pcprmpw2 15424 pcmpt 15434 pgpfi 17843 ablfac1eulem 18294 isppw2 24641 |
Copyright terms: Public domain | W3C validator |