Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  difundir Structured version   Visualization version   GIF version

Theorem difundir 3839
 Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difundir ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem difundir
StepHypRef Expression
1 indir 3834 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶)))
2 invdif 3827 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴𝐵) ∖ 𝐶)
3 invdif 3827 . . 3 (𝐴 ∩ (V ∖ 𝐶)) = (𝐴𝐶)
4 invdif 3827 . . 3 (𝐵 ∩ (V ∖ 𝐶)) = (𝐵𝐶)
53, 4uneq12i 3727 . 2 ((𝐴 ∩ (V ∖ 𝐶)) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴𝐶) ∪ (𝐵𝐶))
61, 2, 53eqtr3i 2640 1 ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475  Vcvv 3173   ∖ cdif 3537   ∪ cun 3538   ∩ cin 3539 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547 This theorem is referenced by:  dfsymdif3  3852  difun2  4000  diftpsn3  4273  diftpsn3OLD  4274  setsfun0  15726  strleun  15799  mreexmrid  16126  mreexexlem2d  16128  mvdco  17688  dprd2da  18264  dmdprdsplit2lem  18267  ablfac1eulem  18294  lbsextlem4  18982  opsrtoslem2  19306  nulmbl2  23111  uniioombllem3  23159  ex-dif  26672  indifundif  28740  imadifxp  28796  ballotlemfp1  29880  ballotlemgun  29913  onint1  31618  lindsenlbs  32574  poimirlem2  32581  poimirlem6  32585  poimirlem7  32586  poimirlem8  32587  poimirlem22  32601  dvmptfprodlem  38834  fourierdlem102  39101  fourierdlem114  39113  caragenuncllem  39402  carageniuncllem1  39411
 Copyright terms: Public domain W3C validator