MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexexlem2d Structured version   Visualization version   GIF version

Theorem mreexexlem2d 16128
Description: Used in mreexexlem4d 16130 to prove the induction step in mreexexd 16131. See the proof of Proposition 4.2.1 in [FaureFrolicher] p. 86 to 87. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexexlem2d.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mreexexlem2d.2 𝑁 = (mrCls‘𝐴)
mreexexlem2d.3 𝐼 = (mrInd‘𝐴)
mreexexlem2d.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
mreexexlem2d.5 (𝜑𝐹 ⊆ (𝑋𝐻))
mreexexlem2d.6 (𝜑𝐺 ⊆ (𝑋𝐻))
mreexexlem2d.7 (𝜑𝐹 ⊆ (𝑁‘(𝐺𝐻)))
mreexexlem2d.8 (𝜑 → (𝐹𝐻) ∈ 𝐼)
mreexexlem2d.9 (𝜑𝑌𝐹)
Assertion
Ref Expression
mreexexlem2d (𝜑 → ∃𝑔𝐺𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼))
Distinct variable groups:   𝐹,𝑠,𝑔,𝑦,𝑧   𝐺,𝑠,𝑔,𝑦,𝑧   𝐻,𝑠,𝑔,𝑦,𝑧   𝜑,𝑠,𝑔,𝑦,𝑧   𝑌,𝑠,𝑔,𝑦,𝑧   𝑁,𝑠,𝑔,𝑦,𝑧   𝑋,𝑠,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑔,𝑠)   𝐼(𝑦,𝑧,𝑔,𝑠)   𝑋(𝑧,𝑔)

Proof of Theorem mreexexlem2d
StepHypRef Expression
1 mreexexlem2d.7 . . . . . . . 8 (𝜑𝐹 ⊆ (𝑁‘(𝐺𝐻)))
21adantr 480 . . . . . . 7 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → 𝐹 ⊆ (𝑁‘(𝐺𝐻)))
3 mreexexlem2d.1 . . . . . . . . . 10 (𝜑𝐴 ∈ (Moore‘𝑋))
43adantr 480 . . . . . . . . 9 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → 𝐴 ∈ (Moore‘𝑋))
5 mreexexlem2d.2 . . . . . . . . 9 𝑁 = (mrCls‘𝐴)
6 simpr 476 . . . . . . . . . 10 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → 𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
7 ssun2 3739 . . . . . . . . . . . . 13 𝐻 ⊆ ((𝐹 ∖ {𝑌}) ∪ 𝐻)
8 difundir 3839 . . . . . . . . . . . . . 14 ((𝐹𝐻) ∖ {𝑌}) = ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∖ {𝑌}))
9 mreexexlem2d.9 . . . . . . . . . . . . . . . . 17 (𝜑𝑌𝐹)
10 incom 3767 . . . . . . . . . . . . . . . . . 18 (𝐹𝐻) = (𝐻𝐹)
11 mreexexlem2d.5 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ⊆ (𝑋𝐻))
12 ssdifin0 4002 . . . . . . . . . . . . . . . . . . 19 (𝐹 ⊆ (𝑋𝐻) → (𝐹𝐻) = ∅)
1311, 12syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝐻) = ∅)
1410, 13syl5eqr 2658 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐻𝐹) = ∅)
15 minel 3985 . . . . . . . . . . . . . . . . 17 ((𝑌𝐹 ∧ (𝐻𝐹) = ∅) → ¬ 𝑌𝐻)
169, 14, 15syl2anc 691 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑌𝐻)
17 difsnb 4278 . . . . . . . . . . . . . . . 16 𝑌𝐻 ↔ (𝐻 ∖ {𝑌}) = 𝐻)
1816, 17sylib 207 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻 ∖ {𝑌}) = 𝐻)
1918uneq2d 3729 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∖ {𝑌})) = ((𝐹 ∖ {𝑌}) ∪ 𝐻))
208, 19syl5eq 2656 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐻) ∖ {𝑌}) = ((𝐹 ∖ {𝑌}) ∪ 𝐻))
217, 20syl5sseqr 3617 . . . . . . . . . . . 12 (𝜑𝐻 ⊆ ((𝐹𝐻) ∖ {𝑌}))
22 mreexexlem2d.3 . . . . . . . . . . . . . . 15 𝐼 = (mrInd‘𝐴)
23 mreexexlem2d.8 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝐻) ∈ 𝐼)
2422, 3, 23mrissd 16119 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐻) ⊆ 𝑋)
2524ssdifssd 3710 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐻) ∖ {𝑌}) ⊆ 𝑋)
263, 5, 25mrcssidd 16108 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐻) ∖ {𝑌}) ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
2721, 26sstrd 3578 . . . . . . . . . . 11 (𝜑𝐻 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
2827adantr 480 . . . . . . . . . 10 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → 𝐻 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
296, 28unssd 3751 . . . . . . . . 9 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → (𝐺𝐻) ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
304, 5mrcssvd 16106 . . . . . . . . 9 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → (𝑁‘((𝐹𝐻) ∖ {𝑌})) ⊆ 𝑋)
314, 5, 29, 30mrcssd 16107 . . . . . . . 8 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → (𝑁‘(𝐺𝐻)) ⊆ (𝑁‘(𝑁‘((𝐹𝐻) ∖ {𝑌}))))
3225adantr 480 . . . . . . . . 9 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → ((𝐹𝐻) ∖ {𝑌}) ⊆ 𝑋)
334, 5, 32mrcidmd 16109 . . . . . . . 8 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → (𝑁‘(𝑁‘((𝐹𝐻) ∖ {𝑌}))) = (𝑁‘((𝐹𝐻) ∖ {𝑌})))
3431, 33sseqtrd 3604 . . . . . . 7 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → (𝑁‘(𝐺𝐻)) ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
352, 34sstrd 3578 . . . . . 6 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → 𝐹 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
369adantr 480 . . . . . 6 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → 𝑌𝐹)
3735, 36sseldd 3569 . . . . 5 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → 𝑌 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
3823adantr 480 . . . . . 6 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → (𝐹𝐻) ∈ 𝐼)
39 ssun1 3738 . . . . . . 7 𝐹 ⊆ (𝐹𝐻)
4039, 36sseldi 3566 . . . . . 6 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → 𝑌 ∈ (𝐹𝐻))
415, 22, 4, 38, 40ismri2dad 16120 . . . . 5 ((𝜑𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → ¬ 𝑌 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
4237, 41pm2.65da 598 . . . 4 (𝜑 → ¬ 𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
43 nss 3626 . . . 4 𝐺 ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})) ↔ ∃𝑔(𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌}))))
4442, 43sylib 207 . . 3 (𝜑 → ∃𝑔(𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌}))))
45 simprl 790 . . . . . 6 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → 𝑔𝐺)
46 ssun1 3738 . . . . . . . . . 10 (𝐹 ∖ {𝑌}) ⊆ ((𝐹 ∖ {𝑌}) ∪ 𝐻)
4746, 20syl5sseqr 3617 . . . . . . . . 9 (𝜑 → (𝐹 ∖ {𝑌}) ⊆ ((𝐹𝐻) ∖ {𝑌}))
4847, 26sstrd 3578 . . . . . . . 8 (𝜑 → (𝐹 ∖ {𝑌}) ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
4948adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → (𝐹 ∖ {𝑌}) ⊆ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
50 simprr 792 . . . . . . 7 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))
5149, 50ssneldd 3571 . . . . . 6 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → ¬ 𝑔 ∈ (𝐹 ∖ {𝑌}))
52 unass 3732 . . . . . . 7 (((𝐹 ∖ {𝑌}) ∪ 𝐻) ∪ {𝑔}) = ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔}))
533adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → 𝐴 ∈ (Moore‘𝑋))
54 mreexexlem2d.4 . . . . . . . . 9 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
5554adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
5623adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → (𝐹𝐻) ∈ 𝐼)
57 difss 3699 . . . . . . . . . 10 (𝐹 ∖ {𝑌}) ⊆ 𝐹
58 unss1 3744 . . . . . . . . . 10 ((𝐹 ∖ {𝑌}) ⊆ 𝐹 → ((𝐹 ∖ {𝑌}) ∪ 𝐻) ⊆ (𝐹𝐻))
5957, 58mp1i 13 . . . . . . . . 9 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → ((𝐹 ∖ {𝑌}) ∪ 𝐻) ⊆ (𝐹𝐻))
6053, 5, 22, 56, 59mrissmrid 16124 . . . . . . . 8 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → ((𝐹 ∖ {𝑌}) ∪ 𝐻) ∈ 𝐼)
61 mreexexlem2d.6 . . . . . . . . . . 11 (𝜑𝐺 ⊆ (𝑋𝐻))
6261adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → 𝐺 ⊆ (𝑋𝐻))
6362difss2d 3702 . . . . . . . . 9 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → 𝐺𝑋)
6463, 45sseldd 3569 . . . . . . . 8 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → 𝑔𝑋)
6520adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → ((𝐹𝐻) ∖ {𝑌}) = ((𝐹 ∖ {𝑌}) ∪ 𝐻))
6665fveq2d 6107 . . . . . . . . 9 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → (𝑁‘((𝐹𝐻) ∖ {𝑌})) = (𝑁‘((𝐹 ∖ {𝑌}) ∪ 𝐻)))
6750, 66neleqtrd 2709 . . . . . . . 8 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → ¬ 𝑔 ∈ (𝑁‘((𝐹 ∖ {𝑌}) ∪ 𝐻)))
6853, 5, 22, 55, 60, 64, 67mreexmrid 16126 . . . . . . 7 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → (((𝐹 ∖ {𝑌}) ∪ 𝐻) ∪ {𝑔}) ∈ 𝐼)
6952, 68syl5eqelr 2693 . . . . . 6 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼)
7045, 51, 69jca32 556 . . . . 5 ((𝜑 ∧ (𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌})))) → (𝑔𝐺 ∧ (¬ 𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼)))
7170ex 449 . . . 4 (𝜑 → ((𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → (𝑔𝐺 ∧ (¬ 𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼))))
7271eximdv 1833 . . 3 (𝜑 → (∃𝑔(𝑔𝐺 ∧ ¬ 𝑔 ∈ (𝑁‘((𝐹𝐻) ∖ {𝑌}))) → ∃𝑔(𝑔𝐺 ∧ (¬ 𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼))))
7344, 72mpd 15 . 2 (𝜑 → ∃𝑔(𝑔𝐺 ∧ (¬ 𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼)))
74 df-rex 2902 . 2 (∃𝑔𝐺𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼) ↔ ∃𝑔(𝑔𝐺 ∧ (¬ 𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼)))
7573, 74sylibr 223 1 (𝜑 → ∃𝑔𝐺𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125  cfv 5804  Moorecmre 16065  mrClscmrc 16066  mrIndcmri 16067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-mre 16069  df-mrc 16070  df-mri 16071
This theorem is referenced by:  mreexexlem4d  16130
  Copyright terms: Public domain W3C validator