MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexexd Structured version   Visualization version   GIF version

Theorem mreexexd 16131
Description: Exchange-type theorem. In a Moore system whose closure operator has the exchange property, if 𝐹 and 𝐺 are disjoint from 𝐻, (𝐹𝐻) is independent, 𝐹 is contained in the closure of (𝐺𝐻), and either 𝐹 or 𝐺 is finite, then there is a subset 𝑞 of 𝐺 equinumerous to 𝐹 such that (𝑞𝐻) is independent. This implies the case of Proposition 4.2.1 in [FaureFrolicher] p. 86 where either (𝐴𝐵) or (𝐵𝐴) is finite. The theorem is proven by induction using mreexexlem3d 16129 for the base case and mreexexlem4d 16130 for the induction step. (Contributed by David Moews, 1-May-2017.) Removed dependencies on ax-rep 4699 and ax-ac2 9168. (Revised by Brendan Leahy, 2-Jun-2021.)
Hypotheses
Ref Expression
mreexexlem2d.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mreexexlem2d.2 𝑁 = (mrCls‘𝐴)
mreexexlem2d.3 𝐼 = (mrInd‘𝐴)
mreexexlem2d.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
mreexexlem2d.5 (𝜑𝐹 ⊆ (𝑋𝐻))
mreexexlem2d.6 (𝜑𝐺 ⊆ (𝑋𝐻))
mreexexlem2d.7 (𝜑𝐹 ⊆ (𝑁‘(𝐺𝐻)))
mreexexlem2d.8 (𝜑 → (𝐹𝐻) ∈ 𝐼)
mreexexd.9 (𝜑 → (𝐹 ∈ Fin ∨ 𝐺 ∈ Fin))
Assertion
Ref Expression
mreexexd (𝜑 → ∃𝑞 ∈ 𝒫 𝐺(𝐹𝑞 ∧ (𝑞𝐻) ∈ 𝐼))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝑋,𝑠,𝑦,𝑧   𝜑,𝑠,𝑦,𝑧   𝐼,𝑠,𝑦,𝑧   𝑁,𝑠,𝑦,𝑧   𝜑,𝑞   𝐼,𝑞   𝐻,𝑞
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑠,𝑞)   𝐹(𝑦,𝑧,𝑠)   𝐺(𝑦,𝑧,𝑠)   𝐻(𝑦,𝑧,𝑠)   𝑁(𝑞)   𝑋(𝑞)

Proof of Theorem mreexexd
Dummy variables 𝑓 𝑔 𝑙 𝑘 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mreexexlem2d.1 . . 3 (𝜑𝐴 ∈ (Moore‘𝑋))
21elfvexd 6132 . 2 (𝜑𝑋 ∈ V)
3 mreexexlem2d.5 . 2 (𝜑𝐹 ⊆ (𝑋𝐻))
4 mreexexlem2d.6 . 2 (𝜑𝐺 ⊆ (𝑋𝐻))
5 mreexexlem2d.7 . 2 (𝜑𝐹 ⊆ (𝑁‘(𝐺𝐻)))
6 mreexexlem2d.8 . 2 (𝜑 → (𝐹𝐻) ∈ 𝐼)
7 exmid 430 . . 3 (𝐹 ∈ Fin ∨ ¬ 𝐹 ∈ Fin)
8 ficardid 8671 . . . . . . 7 (𝐹 ∈ Fin → (card‘𝐹) ≈ 𝐹)
98ensymd 7893 . . . . . 6 (𝐹 ∈ Fin → 𝐹 ≈ (card‘𝐹))
10 iftrue 4042 . . . . . 6 (𝐹 ∈ Fin → if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) = (card‘𝐹))
119, 10breqtrrd 4611 . . . . 5 (𝐹 ∈ Fin → 𝐹 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)))
1211a1i 11 . . . 4 (𝜑 → (𝐹 ∈ Fin → 𝐹 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))))
13 mreexexd.9 . . . . . . . 8 (𝜑 → (𝐹 ∈ Fin ∨ 𝐺 ∈ Fin))
1413orcanai 950 . . . . . . 7 ((𝜑 ∧ ¬ 𝐹 ∈ Fin) → 𝐺 ∈ Fin)
15 ficardid 8671 . . . . . . . 8 (𝐺 ∈ Fin → (card‘𝐺) ≈ 𝐺)
1615ensymd 7893 . . . . . . 7 (𝐺 ∈ Fin → 𝐺 ≈ (card‘𝐺))
1714, 16syl 17 . . . . . 6 ((𝜑 ∧ ¬ 𝐹 ∈ Fin) → 𝐺 ≈ (card‘𝐺))
18 iffalse 4045 . . . . . . 7 𝐹 ∈ Fin → if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) = (card‘𝐺))
1918adantl 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐹 ∈ Fin) → if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) = (card‘𝐺))
2017, 19breqtrrd 4611 . . . . 5 ((𝜑 ∧ ¬ 𝐹 ∈ Fin) → 𝐺 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)))
2120ex 449 . . . 4 (𝜑 → (¬ 𝐹 ∈ Fin → 𝐺 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))))
2212, 21orim12d 879 . . 3 (𝜑 → ((𝐹 ∈ Fin ∨ ¬ 𝐹 ∈ Fin) → (𝐹 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝐺 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)))))
237, 22mpi 20 . 2 (𝜑 → (𝐹 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝐺 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))))
24 ficardom 8670 . . . . 5 (𝐹 ∈ Fin → (card‘𝐹) ∈ ω)
2524adantl 481 . . . 4 ((𝜑𝐹 ∈ Fin) → (card‘𝐹) ∈ ω)
26 ficardom 8670 . . . . 5 (𝐺 ∈ Fin → (card‘𝐺) ∈ ω)
2714, 26syl 17 . . . 4 ((𝜑 ∧ ¬ 𝐹 ∈ Fin) → (card‘𝐺) ∈ ω)
2825, 27ifclda 4070 . . 3 (𝜑 → if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∈ ω)
29 breq2 4587 . . . . . . . . . 10 (𝑙 = ∅ → (𝑓𝑙𝑓 ≈ ∅))
30 breq2 4587 . . . . . . . . . 10 (𝑙 = ∅ → (𝑔𝑙𝑔 ≈ ∅))
3129, 30orbi12d 742 . . . . . . . . 9 (𝑙 = ∅ → ((𝑓𝑙𝑔𝑙) ↔ (𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅)))
32313anbi1d 1395 . . . . . . . 8 (𝑙 = ∅ → (((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) ↔ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)))
3332imbi1d 330 . . . . . . 7 (𝑙 = ∅ → ((((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ (((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
34332ralbidv 2972 . . . . . 6 (𝑙 = ∅ → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
3534albidv 1836 . . . . 5 (𝑙 = ∅ → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
3635imbi2d 329 . . . 4 (𝑙 = ∅ → ((𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ↔ (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
37 breq2 4587 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝑓𝑙𝑓𝑘))
38 breq2 4587 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝑔𝑙𝑔𝑘))
3937, 38orbi12d 742 . . . . . . . . 9 (𝑙 = 𝑘 → ((𝑓𝑙𝑔𝑙) ↔ (𝑓𝑘𝑔𝑘)))
40393anbi1d 1395 . . . . . . . 8 (𝑙 = 𝑘 → (((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) ↔ ((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)))
4140imbi1d 330 . . . . . . 7 (𝑙 = 𝑘 → ((((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ (((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
42412ralbidv 2972 . . . . . 6 (𝑙 = 𝑘 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
4342albidv 1836 . . . . 5 (𝑙 = 𝑘 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
4443imbi2d 329 . . . 4 (𝑙 = 𝑘 → ((𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ↔ (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
45 breq2 4587 . . . . . . . . . 10 (𝑙 = suc 𝑘 → (𝑓𝑙𝑓 ≈ suc 𝑘))
46 breq2 4587 . . . . . . . . . 10 (𝑙 = suc 𝑘 → (𝑔𝑙𝑔 ≈ suc 𝑘))
4745, 46orbi12d 742 . . . . . . . . 9 (𝑙 = suc 𝑘 → ((𝑓𝑙𝑔𝑙) ↔ (𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘)))
48473anbi1d 1395 . . . . . . . 8 (𝑙 = suc 𝑘 → (((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) ↔ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)))
4948imbi1d 330 . . . . . . 7 (𝑙 = suc 𝑘 → ((((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ (((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
50492ralbidv 2972 . . . . . 6 (𝑙 = suc 𝑘 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
5150albidv 1836 . . . . 5 (𝑙 = suc 𝑘 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
5251imbi2d 329 . . . 4 (𝑙 = suc 𝑘 → ((𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ↔ (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
53 breq2 4587 . . . . . . . . . 10 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → (𝑓𝑙𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))))
54 breq2 4587 . . . . . . . . . 10 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → (𝑔𝑙𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))))
5553, 54orbi12d 742 . . . . . . . . 9 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → ((𝑓𝑙𝑔𝑙) ↔ (𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)))))
56553anbi1d 1395 . . . . . . . 8 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → (((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) ↔ ((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)))
5756imbi1d 330 . . . . . . 7 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → ((((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ (((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
58572ralbidv 2972 . . . . . 6 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
5958albidv 1836 . . . . 5 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
6059imbi2d 329 . . . 4 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → ((𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ↔ (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
611ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝐴 ∈ (Moore‘𝑋))
62 mreexexlem2d.2 . . . . . . . 8 𝑁 = (mrCls‘𝐴)
63 mreexexlem2d.3 . . . . . . . 8 𝐼 = (mrInd‘𝐴)
64 mreexexlem2d.4 . . . . . . . . 9 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
6564ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
66 simplrl 796 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ∈ 𝒫 (𝑋))
6766elpwid 4118 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ⊆ (𝑋))
68 simplrr 797 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑔 ∈ 𝒫 (𝑋))
6968elpwid 4118 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑔 ⊆ (𝑋))
70 simpr2 1061 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ⊆ (𝑁‘(𝑔)))
71 simpr3 1062 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → (𝑓) ∈ 𝐼)
72 simpr1 1060 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → (𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅))
73 en0 7905 . . . . . . . . . 10 (𝑓 ≈ ∅ ↔ 𝑓 = ∅)
74 en0 7905 . . . . . . . . . 10 (𝑔 ≈ ∅ ↔ 𝑔 = ∅)
7573, 74orbi12i 542 . . . . . . . . 9 ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ↔ (𝑓 = ∅ ∨ 𝑔 = ∅))
7672, 75sylib 207 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → (𝑓 = ∅ ∨ 𝑔 = ∅))
7761, 62, 63, 65, 67, 69, 70, 71, 76mreexexlem3d 16129 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
7877ex 449 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) → (((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
7978ralrimivva 2954 . . . . 5 (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
8079alrimiv 1842 . . . 4 (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
81 nfv 1830 . . . . . . . . 9 𝜑
82 nfv 1830 . . . . . . . . 9 𝑘 ∈ ω
83 nfa1 2015 . . . . . . . . 9 𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
8481, 82, 83nf3an 1819 . . . . . . . 8 (𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
85 nfv 1830 . . . . . . . . . 10 𝑓𝜑
86 nfv 1830 . . . . . . . . . 10 𝑓 𝑘 ∈ ω
87 nfra1 2925 . . . . . . . . . . 11 𝑓𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
8887nfal 2139 . . . . . . . . . 10 𝑓𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
8985, 86, 88nf3an 1819 . . . . . . . . 9 𝑓(𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
90 nfv 1830 . . . . . . . . . . . . 13 𝑔𝜑
91 nfv 1830 . . . . . . . . . . . . 13 𝑔 𝑘 ∈ ω
92 nfra2 2930 . . . . . . . . . . . . . 14 𝑔𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
9392nfal 2139 . . . . . . . . . . . . 13 𝑔𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
9490, 91, 93nf3an 1819 . . . . . . . . . . . 12 𝑔(𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
95 nfv 1830 . . . . . . . . . . . 12 𝑔 𝑓 ∈ 𝒫 (𝑋)
9694, 95nfan 1816 . . . . . . . . . . 11 𝑔((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ 𝑓 ∈ 𝒫 (𝑋))
9713ad2ant1 1075 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → 𝐴 ∈ (Moore‘𝑋))
9897ad2antrr 758 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝐴 ∈ (Moore‘𝑋))
99643ad2ant1 1075 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
10099ad2antrr 758 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
101 simplrl 796 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ∈ 𝒫 (𝑋))
102101elpwid 4118 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ⊆ (𝑋))
103 simplrr 797 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑔 ∈ 𝒫 (𝑋))
104103elpwid 4118 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑔 ⊆ (𝑋))
105 simpr2 1061 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ⊆ (𝑁‘(𝑔)))
106 simpr3 1062 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → (𝑓) ∈ 𝐼)
107 simpll2 1094 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑘 ∈ ω)
108 simpll3 1095 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
109 simpr1 1060 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → (𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘))
11098, 62, 63, 100, 102, 104, 105, 106, 107, 108, 109mreexexlem4d 16130 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
111110ex 449 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) → (((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
112111expr 641 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ 𝑓 ∈ 𝒫 (𝑋)) → (𝑔 ∈ 𝒫 (𝑋) → (((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
11396, 112ralrimi 2940 . . . . . . . . . 10 (((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ 𝑓 ∈ 𝒫 (𝑋)) → ∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
114113ex 449 . . . . . . . . 9 ((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → (𝑓 ∈ 𝒫 (𝑋) → ∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
11589, 114ralrimi 2940 . . . . . . . 8 ((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
11684, 115alrimi 2069 . . . . . . 7 ((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
1171163exp 1256 . . . . . 6 (𝜑 → (𝑘 ∈ ω → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
118117com12 32 . . . . 5 (𝑘 ∈ ω → (𝜑 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
119118a2d 29 . . . 4 (𝑘 ∈ ω → ((𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
12036, 44, 52, 60, 80, 119finds 6984 . . 3 (if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∈ ω → (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
12128, 120mpcom 37 . 2 (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
1222, 3, 4, 5, 6, 23, 121mreexexlemd 16127 1 (𝜑 → ∃𝑞 ∈ 𝒫 𝐺(𝐹𝑞 ∧ (𝑞𝐻) ∈ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1031  wal 1473   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cdif 3537  cun 3538  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  suc csuc 5642  cfv 5804  ωcom 6957  cen 7838  Fincfn 7841  cardccrd 8644  Moorecmre 16065  mrClscmrc 16066  mrIndcmri 16067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-mre 16069  df-mrc 16070  df-mri 16071
This theorem is referenced by:  mreexdomd  16133  lindsdom  32573  aacllem  42356
  Copyright terms: Public domain W3C validator