Mathbox for Brendan Leahy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem8 Structured version   Visualization version   GIF version

Theorem poimirlem8 32587
 Description: Lemma for poimir 32612, establishing that away from the opposite vertex the walks in poimirlem9 32588 yield the same vertices. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem9.1 (𝜑𝑇𝑆)
poimirlem9.2 (𝜑 → (2nd𝑇) ∈ (1...(𝑁 − 1)))
poimirlem9.3 (𝜑𝑈𝑆)
Assertion
Ref Expression
poimirlem8 (𝜑 → ((2nd ‘(1st𝑈)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ((2nd ‘(1st𝑇)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
Distinct variable groups:   𝑓,𝑗,𝑡,𝑦   𝜑,𝑗,𝑦   𝑗,𝐹,𝑦   𝑗,𝑁,𝑦   𝑇,𝑗,𝑦   𝑈,𝑗,𝑦   𝜑,𝑡   𝑓,𝐾,𝑗,𝑡   𝑓,𝑁,𝑡   𝑇,𝑓   𝑈,𝑓   𝑓,𝐹,𝑡   𝑡,𝑇   𝑡,𝑈   𝑆,𝑗,𝑡,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem8
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poimirlem9.3 . . . . . . . 8 (𝜑𝑈𝑆)
2 elrabi 3328 . . . . . . . . 9 (𝑈 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑈 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
3 poimirlem22.s . . . . . . . . 9 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
42, 3eleq2s 2706 . . . . . . . 8 (𝑈𝑆𝑈 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
51, 4syl 17 . . . . . . 7 (𝜑𝑈 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
6 xp1st 7089 . . . . . . 7 (𝑈 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑈) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
75, 6syl 17 . . . . . 6 (𝜑 → (1st𝑈) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
8 xp2nd 7090 . . . . . 6 ((1st𝑈) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑈)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
97, 8syl 17 . . . . 5 (𝜑 → (2nd ‘(1st𝑈)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
10 fvex 6113 . . . . . 6 (2nd ‘(1st𝑈)) ∈ V
11 f1oeq1 6040 . . . . . 6 (𝑓 = (2nd ‘(1st𝑈)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁)))
1210, 11elab 3319 . . . . 5 ((2nd ‘(1st𝑈)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁))
139, 12sylib 207 . . . 4 (𝜑 → (2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁))
14 f1ofn 6051 . . . 4 ((2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑈)) Fn (1...𝑁))
1513, 14syl 17 . . 3 (𝜑 → (2nd ‘(1st𝑈)) Fn (1...𝑁))
16 difss 3699 . . 3 ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ (1...𝑁)
17 fnssres 5918 . . 3 (((2nd ‘(1st𝑈)) Fn (1...𝑁) ∧ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ (1...𝑁)) → ((2nd ‘(1st𝑈)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) Fn ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
1815, 16, 17sylancl 693 . 2 (𝜑 → ((2nd ‘(1st𝑈)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) Fn ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
19 poimirlem9.1 . . . . . . . 8 (𝜑𝑇𝑆)
20 elrabi 3328 . . . . . . . . 9 (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
2120, 3eleq2s 2706 . . . . . . . 8 (𝑇𝑆𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
2219, 21syl 17 . . . . . . 7 (𝜑𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
23 xp1st 7089 . . . . . . 7 (𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
2422, 23syl 17 . . . . . 6 (𝜑 → (1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
25 xp2nd 7090 . . . . . 6 ((1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
2624, 25syl 17 . . . . 5 (𝜑 → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
27 fvex 6113 . . . . . 6 (2nd ‘(1st𝑇)) ∈ V
28 f1oeq1 6040 . . . . . 6 (𝑓 = (2nd ‘(1st𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)))
2927, 28elab 3319 . . . . 5 ((2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
3026, 29sylib 207 . . . 4 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
31 f1ofn 6051 . . . 4 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)) Fn (1...𝑁))
3230, 31syl 17 . . 3 (𝜑 → (2nd ‘(1st𝑇)) Fn (1...𝑁))
33 fnssres 5918 . . 3 (((2nd ‘(1st𝑇)) Fn (1...𝑁) ∧ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ⊆ (1...𝑁)) → ((2nd ‘(1st𝑇)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) Fn ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
3432, 16, 33sylancl 693 . 2 (𝜑 → ((2nd ‘(1st𝑇)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) Fn ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
35 poimirlem9.2 . . . . . . . . . . . 12 (𝜑 → (2nd𝑇) ∈ (1...(𝑁 − 1)))
36 fzp1elp1 12264 . . . . . . . . . . . 12 ((2nd𝑇) ∈ (1...(𝑁 − 1)) → ((2nd𝑇) + 1) ∈ (1...((𝑁 − 1) + 1)))
3735, 36syl 17 . . . . . . . . . . 11 (𝜑 → ((2nd𝑇) + 1) ∈ (1...((𝑁 − 1) + 1)))
38 poimir.0 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
3938nncnd 10913 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
40 npcan1 10334 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
4139, 40syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
4241oveq2d 6565 . . . . . . . . . . 11 (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁))
4337, 42eleqtrd 2690 . . . . . . . . . 10 (𝜑 → ((2nd𝑇) + 1) ∈ (1...𝑁))
44 fzsplit 12238 . . . . . . . . . 10 (((2nd𝑇) + 1) ∈ (1...𝑁) → (1...𝑁) = ((1...((2nd𝑇) + 1)) ∪ ((((2nd𝑇) + 1) + 1)...𝑁)))
4543, 44syl 17 . . . . . . . . 9 (𝜑 → (1...𝑁) = ((1...((2nd𝑇) + 1)) ∪ ((((2nd𝑇) + 1) + 1)...𝑁)))
4645difeq1d 3689 . . . . . . . 8 (𝜑 → ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = (((1...((2nd𝑇) + 1)) ∪ ((((2nd𝑇) + 1) + 1)...𝑁)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
47 difundir 3839 . . . . . . . . 9 (((1...((2nd𝑇) + 1)) ∪ ((((2nd𝑇) + 1) + 1)...𝑁)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = (((1...((2nd𝑇) + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∪ (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
48 elfznn 12241 . . . . . . . . . . . . . . . . . 18 ((2nd𝑇) ∈ (1...(𝑁 − 1)) → (2nd𝑇) ∈ ℕ)
4935, 48syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (2nd𝑇) ∈ ℕ)
5049nncnd 10913 . . . . . . . . . . . . . . . 16 (𝜑 → (2nd𝑇) ∈ ℂ)
51 npcan1 10334 . . . . . . . . . . . . . . . 16 ((2nd𝑇) ∈ ℂ → (((2nd𝑇) − 1) + 1) = (2nd𝑇))
5250, 51syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (((2nd𝑇) − 1) + 1) = (2nd𝑇))
53 nnuz 11599 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
5449, 53syl6eleq 2698 . . . . . . . . . . . . . . 15 (𝜑 → (2nd𝑇) ∈ (ℤ‘1))
5552, 54eqeltrd 2688 . . . . . . . . . . . . . 14 (𝜑 → (((2nd𝑇) − 1) + 1) ∈ (ℤ‘1))
5649nnzd 11357 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2nd𝑇) ∈ ℤ)
57 peano2zm 11297 . . . . . . . . . . . . . . . . . 18 ((2nd𝑇) ∈ ℤ → ((2nd𝑇) − 1) ∈ ℤ)
5856, 57syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2nd𝑇) − 1) ∈ ℤ)
59 uzid 11578 . . . . . . . . . . . . . . . . 17 (((2nd𝑇) − 1) ∈ ℤ → ((2nd𝑇) − 1) ∈ (ℤ‘((2nd𝑇) − 1)))
60 peano2uz 11617 . . . . . . . . . . . . . . . . 17 (((2nd𝑇) − 1) ∈ (ℤ‘((2nd𝑇) − 1)) → (((2nd𝑇) − 1) + 1) ∈ (ℤ‘((2nd𝑇) − 1)))
6158, 59, 603syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (((2nd𝑇) − 1) + 1) ∈ (ℤ‘((2nd𝑇) − 1)))
6252, 61eqeltrrd 2689 . . . . . . . . . . . . . . 15 (𝜑 → (2nd𝑇) ∈ (ℤ‘((2nd𝑇) − 1)))
63 peano2uz 11617 . . . . . . . . . . . . . . 15 ((2nd𝑇) ∈ (ℤ‘((2nd𝑇) − 1)) → ((2nd𝑇) + 1) ∈ (ℤ‘((2nd𝑇) − 1)))
6462, 63syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((2nd𝑇) + 1) ∈ (ℤ‘((2nd𝑇) − 1)))
65 fzsplit2 12237 . . . . . . . . . . . . . 14 (((((2nd𝑇) − 1) + 1) ∈ (ℤ‘1) ∧ ((2nd𝑇) + 1) ∈ (ℤ‘((2nd𝑇) − 1))) → (1...((2nd𝑇) + 1)) = ((1...((2nd𝑇) − 1)) ∪ ((((2nd𝑇) − 1) + 1)...((2nd𝑇) + 1))))
6655, 64, 65syl2anc 691 . . . . . . . . . . . . 13 (𝜑 → (1...((2nd𝑇) + 1)) = ((1...((2nd𝑇) − 1)) ∪ ((((2nd𝑇) − 1) + 1)...((2nd𝑇) + 1))))
6752oveq1d 6564 . . . . . . . . . . . . . . 15 (𝜑 → ((((2nd𝑇) − 1) + 1)...((2nd𝑇) + 1)) = ((2nd𝑇)...((2nd𝑇) + 1)))
68 fzpr 12266 . . . . . . . . . . . . . . . 16 ((2nd𝑇) ∈ ℤ → ((2nd𝑇)...((2nd𝑇) + 1)) = {(2nd𝑇), ((2nd𝑇) + 1)})
6956, 68syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((2nd𝑇)...((2nd𝑇) + 1)) = {(2nd𝑇), ((2nd𝑇) + 1)})
7067, 69eqtrd 2644 . . . . . . . . . . . . . 14 (𝜑 → ((((2nd𝑇) − 1) + 1)...((2nd𝑇) + 1)) = {(2nd𝑇), ((2nd𝑇) + 1)})
7170uneq2d 3729 . . . . . . . . . . . . 13 (𝜑 → ((1...((2nd𝑇) − 1)) ∪ ((((2nd𝑇) − 1) + 1)...((2nd𝑇) + 1))) = ((1...((2nd𝑇) − 1)) ∪ {(2nd𝑇), ((2nd𝑇) + 1)}))
7266, 71eqtrd 2644 . . . . . . . . . . . 12 (𝜑 → (1...((2nd𝑇) + 1)) = ((1...((2nd𝑇) − 1)) ∪ {(2nd𝑇), ((2nd𝑇) + 1)}))
7372difeq1d 3689 . . . . . . . . . . 11 (𝜑 → ((1...((2nd𝑇) + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = (((1...((2nd𝑇) − 1)) ∪ {(2nd𝑇), ((2nd𝑇) + 1)}) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))
7449nnred 10912 . . . . . . . . . . . . . . . . 17 (𝜑 → (2nd𝑇) ∈ ℝ)
7574ltm1d 10835 . . . . . . . . . . . . . . . 16 (𝜑 → ((2nd𝑇) − 1) < (2nd𝑇))
7658zred 11358 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2nd𝑇) − 1) ∈ ℝ)
7776, 74ltnled 10063 . . . . . . . . . . . . . . . 16 (𝜑 → (((2nd𝑇) − 1) < (2nd𝑇) ↔ ¬ (2nd𝑇) ≤ ((2nd𝑇) − 1)))
7875, 77mpbid 221 . . . . . . . . . . . . . . 15 (𝜑 → ¬ (2nd𝑇) ≤ ((2nd𝑇) − 1))
79 elfzle2 12216 . . . . . . . . . . . . . . 15 ((2nd𝑇) ∈ (1...((2nd𝑇) − 1)) → (2nd𝑇) ≤ ((2nd𝑇) − 1))
8078, 79nsyl 134 . . . . . . . . . . . . . 14 (𝜑 → ¬ (2nd𝑇) ∈ (1...((2nd𝑇) − 1)))
81 difsn 4269 . . . . . . . . . . . . . 14 (¬ (2nd𝑇) ∈ (1...((2nd𝑇) − 1)) → ((1...((2nd𝑇) − 1)) ∖ {(2nd𝑇)}) = (1...((2nd𝑇) − 1)))
8280, 81syl 17 . . . . . . . . . . . . 13 (𝜑 → ((1...((2nd𝑇) − 1)) ∖ {(2nd𝑇)}) = (1...((2nd𝑇) − 1)))
83 peano2re 10088 . . . . . . . . . . . . . . . . . 18 ((2nd𝑇) ∈ ℝ → ((2nd𝑇) + 1) ∈ ℝ)
8474, 83syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2nd𝑇) + 1) ∈ ℝ)
8574ltp1d 10833 . . . . . . . . . . . . . . . . 17 (𝜑 → (2nd𝑇) < ((2nd𝑇) + 1))
8676, 74, 84, 75, 85lttrd 10077 . . . . . . . . . . . . . . . 16 (𝜑 → ((2nd𝑇) − 1) < ((2nd𝑇) + 1))
8776, 84ltnled 10063 . . . . . . . . . . . . . . . 16 (𝜑 → (((2nd𝑇) − 1) < ((2nd𝑇) + 1) ↔ ¬ ((2nd𝑇) + 1) ≤ ((2nd𝑇) − 1)))
8886, 87mpbid 221 . . . . . . . . . . . . . . 15 (𝜑 → ¬ ((2nd𝑇) + 1) ≤ ((2nd𝑇) − 1))
89 elfzle2 12216 . . . . . . . . . . . . . . 15 (((2nd𝑇) + 1) ∈ (1...((2nd𝑇) − 1)) → ((2nd𝑇) + 1) ≤ ((2nd𝑇) − 1))
9088, 89nsyl 134 . . . . . . . . . . . . . 14 (𝜑 → ¬ ((2nd𝑇) + 1) ∈ (1...((2nd𝑇) − 1)))
91 difsn 4269 . . . . . . . . . . . . . 14 (¬ ((2nd𝑇) + 1) ∈ (1...((2nd𝑇) − 1)) → ((1...((2nd𝑇) − 1)) ∖ {((2nd𝑇) + 1)}) = (1...((2nd𝑇) − 1)))
9290, 91syl 17 . . . . . . . . . . . . 13 (𝜑 → ((1...((2nd𝑇) − 1)) ∖ {((2nd𝑇) + 1)}) = (1...((2nd𝑇) − 1)))
9382, 92ineq12d 3777 . . . . . . . . . . . 12 (𝜑 → (((1...((2nd𝑇) − 1)) ∖ {(2nd𝑇)}) ∩ ((1...((2nd𝑇) − 1)) ∖ {((2nd𝑇) + 1)})) = ((1...((2nd𝑇) − 1)) ∩ (1...((2nd𝑇) − 1))))
94 difun2 4000 . . . . . . . . . . . . 13 (((1...((2nd𝑇) − 1)) ∪ {(2nd𝑇), ((2nd𝑇) + 1)}) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = ((1...((2nd𝑇) − 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})
95 df-pr 4128 . . . . . . . . . . . . . 14 {(2nd𝑇), ((2nd𝑇) + 1)} = ({(2nd𝑇)} ∪ {((2nd𝑇) + 1)})
9695difeq2i 3687 . . . . . . . . . . . . 13 ((1...((2nd𝑇) − 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = ((1...((2nd𝑇) − 1)) ∖ ({(2nd𝑇)} ∪ {((2nd𝑇) + 1)}))
97 difundi 3838 . . . . . . . . . . . . 13 ((1...((2nd𝑇) − 1)) ∖ ({(2nd𝑇)} ∪ {((2nd𝑇) + 1)})) = (((1...((2nd𝑇) − 1)) ∖ {(2nd𝑇)}) ∩ ((1...((2nd𝑇) − 1)) ∖ {((2nd𝑇) + 1)}))
9894, 96, 973eqtrri 2637 . . . . . . . . . . . 12 (((1...((2nd𝑇) − 1)) ∖ {(2nd𝑇)}) ∩ ((1...((2nd𝑇) − 1)) ∖ {((2nd𝑇) + 1)})) = (((1...((2nd𝑇) − 1)) ∪ {(2nd𝑇), ((2nd𝑇) + 1)}) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})
99 inidm 3784 . . . . . . . . . . . 12 ((1...((2nd𝑇) − 1)) ∩ (1...((2nd𝑇) − 1))) = (1...((2nd𝑇) − 1))
10093, 98, 993eqtr3g 2667 . . . . . . . . . . 11 (𝜑 → (((1...((2nd𝑇) − 1)) ∪ {(2nd𝑇), ((2nd𝑇) + 1)}) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = (1...((2nd𝑇) − 1)))
10173, 100eqtrd 2644 . . . . . . . . . 10 (𝜑 → ((1...((2nd𝑇) + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = (1...((2nd𝑇) − 1)))
102 peano2re 10088 . . . . . . . . . . . . . . . . 17 (((2nd𝑇) + 1) ∈ ℝ → (((2nd𝑇) + 1) + 1) ∈ ℝ)
10384, 102syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (((2nd𝑇) + 1) + 1) ∈ ℝ)
10484ltp1d 10833 . . . . . . . . . . . . . . . 16 (𝜑 → ((2nd𝑇) + 1) < (((2nd𝑇) + 1) + 1))
10574, 84, 103, 85, 104lttrd 10077 . . . . . . . . . . . . . . 15 (𝜑 → (2nd𝑇) < (((2nd𝑇) + 1) + 1))
10674, 103ltnled 10063 . . . . . . . . . . . . . . 15 (𝜑 → ((2nd𝑇) < (((2nd𝑇) + 1) + 1) ↔ ¬ (((2nd𝑇) + 1) + 1) ≤ (2nd𝑇)))
107105, 106mpbid 221 . . . . . . . . . . . . . 14 (𝜑 → ¬ (((2nd𝑇) + 1) + 1) ≤ (2nd𝑇))
108 elfzle1 12215 . . . . . . . . . . . . . 14 ((2nd𝑇) ∈ ((((2nd𝑇) + 1) + 1)...𝑁) → (((2nd𝑇) + 1) + 1) ≤ (2nd𝑇))
109107, 108nsyl 134 . . . . . . . . . . . . 13 (𝜑 → ¬ (2nd𝑇) ∈ ((((2nd𝑇) + 1) + 1)...𝑁))
110 difsn 4269 . . . . . . . . . . . . 13 (¬ (2nd𝑇) ∈ ((((2nd𝑇) + 1) + 1)...𝑁) → (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {(2nd𝑇)}) = ((((2nd𝑇) + 1) + 1)...𝑁))
111109, 110syl 17 . . . . . . . . . . . 12 (𝜑 → (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {(2nd𝑇)}) = ((((2nd𝑇) + 1) + 1)...𝑁))
11284, 103ltnled 10063 . . . . . . . . . . . . . . 15 (𝜑 → (((2nd𝑇) + 1) < (((2nd𝑇) + 1) + 1) ↔ ¬ (((2nd𝑇) + 1) + 1) ≤ ((2nd𝑇) + 1)))
113104, 112mpbid 221 . . . . . . . . . . . . . 14 (𝜑 → ¬ (((2nd𝑇) + 1) + 1) ≤ ((2nd𝑇) + 1))
114 elfzle1 12215 . . . . . . . . . . . . . 14 (((2nd𝑇) + 1) ∈ ((((2nd𝑇) + 1) + 1)...𝑁) → (((2nd𝑇) + 1) + 1) ≤ ((2nd𝑇) + 1))
115113, 114nsyl 134 . . . . . . . . . . . . 13 (𝜑 → ¬ ((2nd𝑇) + 1) ∈ ((((2nd𝑇) + 1) + 1)...𝑁))
116 difsn 4269 . . . . . . . . . . . . 13 (¬ ((2nd𝑇) + 1) ∈ ((((2nd𝑇) + 1) + 1)...𝑁) → (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {((2nd𝑇) + 1)}) = ((((2nd𝑇) + 1) + 1)...𝑁))
117115, 116syl 17 . . . . . . . . . . . 12 (𝜑 → (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {((2nd𝑇) + 1)}) = ((((2nd𝑇) + 1) + 1)...𝑁))
118111, 117ineq12d 3777 . . . . . . . . . . 11 (𝜑 → ((((((2nd𝑇) + 1) + 1)...𝑁) ∖ {(2nd𝑇)}) ∩ (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {((2nd𝑇) + 1)})) = (((((2nd𝑇) + 1) + 1)...𝑁) ∩ ((((2nd𝑇) + 1) + 1)...𝑁)))
11995difeq2i 3687 . . . . . . . . . . . 12 (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = (((((2nd𝑇) + 1) + 1)...𝑁) ∖ ({(2nd𝑇)} ∪ {((2nd𝑇) + 1)}))
120 difundi 3838 . . . . . . . . . . . 12 (((((2nd𝑇) + 1) + 1)...𝑁) ∖ ({(2nd𝑇)} ∪ {((2nd𝑇) + 1)})) = ((((((2nd𝑇) + 1) + 1)...𝑁) ∖ {(2nd𝑇)}) ∩ (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {((2nd𝑇) + 1)}))
121119, 120eqtr2i 2633 . . . . . . . . . . 11 ((((((2nd𝑇) + 1) + 1)...𝑁) ∖ {(2nd𝑇)}) ∩ (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {((2nd𝑇) + 1)})) = (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})
122 inidm 3784 . . . . . . . . . . 11 (((((2nd𝑇) + 1) + 1)...𝑁) ∩ ((((2nd𝑇) + 1) + 1)...𝑁)) = ((((2nd𝑇) + 1) + 1)...𝑁)
123118, 121, 1223eqtr3g 2667 . . . . . . . . . 10 (𝜑 → (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = ((((2nd𝑇) + 1) + 1)...𝑁))
124101, 123uneq12d 3730 . . . . . . . . 9 (𝜑 → (((1...((2nd𝑇) + 1)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ∪ (((((2nd𝑇) + 1) + 1)...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ((1...((2nd𝑇) − 1)) ∪ ((((2nd𝑇) + 1) + 1)...𝑁)))
12547, 124syl5eq 2656 . . . . . . . 8 (𝜑 → (((1...((2nd𝑇) + 1)) ∪ ((((2nd𝑇) + 1) + 1)...𝑁)) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = ((1...((2nd𝑇) − 1)) ∪ ((((2nd𝑇) + 1) + 1)...𝑁)))
12646, 125eqtrd 2644 . . . . . . 7 (𝜑 → ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) = ((1...((2nd𝑇) − 1)) ∪ ((((2nd𝑇) + 1) + 1)...𝑁)))
127126eleq2d 2673 . . . . . 6 (𝜑 → (𝑘 ∈ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ↔ 𝑘 ∈ ((1...((2nd𝑇) − 1)) ∪ ((((2nd𝑇) + 1) + 1)...𝑁))))
128 elun 3715 . . . . . 6 (𝑘 ∈ ((1...((2nd𝑇) − 1)) ∪ ((((2nd𝑇) + 1) + 1)...𝑁)) ↔ (𝑘 ∈ (1...((2nd𝑇) − 1)) ∨ 𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)))
129127, 128syl6bb 275 . . . . 5 (𝜑 → (𝑘 ∈ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) ↔ (𝑘 ∈ (1...((2nd𝑇) − 1)) ∨ 𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁))))
130129biimpa 500 . . . 4 ((𝜑𝑘 ∈ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) → (𝑘 ∈ (1...((2nd𝑇) − 1)) ∨ 𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)))
131 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑇 → (2nd𝑡) = (2nd𝑇))
132131breq2d 4595 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
133132ifbid 4058 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
134133csbeq1d 3506 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
135 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑇 → (1st𝑡) = (1st𝑇))
136135fveq2d 6107 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
137135fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑇 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑇)))
138137imaeq1d 5384 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑗)))
139138xpeq1d 5062 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}))
140137imaeq1d 5384 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)))
141140xpeq1d 5062 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))
142139, 141uneq12d 3730 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))
143136, 142oveq12d 6567 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → ((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
144143csbeq2dv 3944 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
145134, 144eqtrd 2644 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
146145mpteq2dv 4673 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
147146eqeq2d 2620 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
148147, 3elrab2 3333 . . . . . . . . . . . . . . 15 (𝑇𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
149148simprbi 479 . . . . . . . . . . . . . 14 (𝑇𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
15019, 149syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
151 xp1st 7089 . . . . . . . . . . . . . . . 16 ((1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)))
15224, 151syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)))
153 elmapi 7765 . . . . . . . . . . . . . . 15 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
154152, 153syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
155 elfzoelz 12339 . . . . . . . . . . . . . . 15 (𝑛 ∈ (0..^𝐾) → 𝑛 ∈ ℤ)
156155ssriv 3572 . . . . . . . . . . . . . 14 (0..^𝐾) ⊆ ℤ
157 fss 5969 . . . . . . . . . . . . . 14 (((1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾) ∧ (0..^𝐾) ⊆ ℤ) → (1st ‘(1st𝑇)):(1...𝑁)⟶ℤ)
158154, 156, 157sylancl 693 . . . . . . . . . . . . 13 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶ℤ)
15938, 150, 158, 30, 35poimirlem1 32580 . . . . . . . . . . . 12 (𝜑 → ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑇) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑇))‘𝑛))
16038adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2nd𝑈) ≠ (2nd𝑇)) → 𝑁 ∈ ℕ)
161 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑈 → (2nd𝑡) = (2nd𝑈))
162161breq2d 4595 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑈 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑈)))
163162ifbid 4058 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑈 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)))
164163csbeq1d 3506 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑈if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
165 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑈 → (1st𝑡) = (1st𝑈))
166165fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑈 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑈)))
167165fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑈 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑈)))
168167imaeq1d 5384 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑈 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑈)) “ (1...𝑗)))
169168xpeq1d 5062 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑈 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}))
170167imaeq1d 5384 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑈 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)))
171170xpeq1d 5062 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑈 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))
172169, 171uneq12d 3730 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑈 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0})))
173166, 172oveq12d 6567 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑈 → ((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))
174173csbeq2dv 3944 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑈if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))
175164, 174eqtrd 2644 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑈if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))
176175mpteq2dv 4673 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑈 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0})))))
177176eqeq2d 2620 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑈 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
178177, 3elrab2 3333 . . . . . . . . . . . . . . . . . 18 (𝑈𝑆 ↔ (𝑈 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
179178simprbi 479 . . . . . . . . . . . . . . . . 17 (𝑈𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0})))))
1801, 179syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0})))))
181180adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2nd𝑈) ≠ (2nd𝑇)) → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0})))))
182 xp1st 7089 . . . . . . . . . . . . . . . . . . 19 ((1st𝑈) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑈)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)))
1837, 182syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1st ‘(1st𝑈)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)))
184 elmapi 7765 . . . . . . . . . . . . . . . . . 18 ((1st ‘(1st𝑈)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st ‘(1st𝑈)):(1...𝑁)⟶(0..^𝐾))
185183, 184syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (1st ‘(1st𝑈)):(1...𝑁)⟶(0..^𝐾))
186 fss 5969 . . . . . . . . . . . . . . . . 17 (((1st ‘(1st𝑈)):(1...𝑁)⟶(0..^𝐾) ∧ (0..^𝐾) ⊆ ℤ) → (1st ‘(1st𝑈)):(1...𝑁)⟶ℤ)
187185, 156, 186sylancl 693 . . . . . . . . . . . . . . . 16 (𝜑 → (1st ‘(1st𝑈)):(1...𝑁)⟶ℤ)
188187adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2nd𝑈) ≠ (2nd𝑇)) → (1st ‘(1st𝑈)):(1...𝑁)⟶ℤ)
18913adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2nd𝑈) ≠ (2nd𝑇)) → (2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁))
19035adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2nd𝑈) ≠ (2nd𝑇)) → (2nd𝑇) ∈ (1...(𝑁 − 1)))
191 xp2nd 7090 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (2nd𝑈) ∈ (0...𝑁))
1925, 191syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (2nd𝑈) ∈ (0...𝑁))
193 eldifsn 4260 . . . . . . . . . . . . . . . . 17 ((2nd𝑈) ∈ ((0...𝑁) ∖ {(2nd𝑇)}) ↔ ((2nd𝑈) ∈ (0...𝑁) ∧ (2nd𝑈) ≠ (2nd𝑇)))
194193biimpri 217 . . . . . . . . . . . . . . . 16 (((2nd𝑈) ∈ (0...𝑁) ∧ (2nd𝑈) ≠ (2nd𝑇)) → (2nd𝑈) ∈ ((0...𝑁) ∖ {(2nd𝑇)}))
195192, 194sylan 487 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2nd𝑈) ≠ (2nd𝑇)) → (2nd𝑈) ∈ ((0...𝑁) ∖ {(2nd𝑇)}))
196160, 181, 188, 189, 190, 195poimirlem2 32581 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2nd𝑈) ≠ (2nd𝑇)) → ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑇) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑇))‘𝑛))
197196ex 449 . . . . . . . . . . . . 13 (𝜑 → ((2nd𝑈) ≠ (2nd𝑇) → ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑇) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑇))‘𝑛)))
198197necon1bd 2800 . . . . . . . . . . . 12 (𝜑 → (¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑇) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑇))‘𝑛) → (2nd𝑈) = (2nd𝑇)))
199159, 198mpd 15 . . . . . . . . . . 11 (𝜑 → (2nd𝑈) = (2nd𝑇))
200199oveq1d 6564 . . . . . . . . . 10 (𝜑 → ((2nd𝑈) − 1) = ((2nd𝑇) − 1))
201200oveq2d 6565 . . . . . . . . 9 (𝜑 → (1...((2nd𝑈) − 1)) = (1...((2nd𝑇) − 1)))
202201eleq2d 2673 . . . . . . . 8 (𝜑 → (𝑘 ∈ (1...((2nd𝑈) − 1)) ↔ 𝑘 ∈ (1...((2nd𝑇) − 1))))
203202biimpar 501 . . . . . . 7 ((𝜑𝑘 ∈ (1...((2nd𝑇) − 1))) → 𝑘 ∈ (1...((2nd𝑈) − 1)))
20438adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (1...((2nd𝑈) − 1))) → 𝑁 ∈ ℕ)
2051adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (1...((2nd𝑈) − 1))) → 𝑈𝑆)
206199, 35eqeltrd 2688 . . . . . . . . 9 (𝜑 → (2nd𝑈) ∈ (1...(𝑁 − 1)))
207206adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (1...((2nd𝑈) − 1))) → (2nd𝑈) ∈ (1...(𝑁 − 1)))
208 simpr 476 . . . . . . . 8 ((𝜑𝑘 ∈ (1...((2nd𝑈) − 1))) → 𝑘 ∈ (1...((2nd𝑈) − 1)))
209204, 3, 205, 207, 208poimirlem6 32585 . . . . . . 7 ((𝜑𝑘 ∈ (1...((2nd𝑈) − 1))) → (𝑛 ∈ (1...𝑁)((𝐹‘(𝑘 − 1))‘𝑛) ≠ ((𝐹𝑘)‘𝑛)) = ((2nd ‘(1st𝑈))‘𝑘))
210203, 209syldan 486 . . . . . 6 ((𝜑𝑘 ∈ (1...((2nd𝑇) − 1))) → (𝑛 ∈ (1...𝑁)((𝐹‘(𝑘 − 1))‘𝑛) ≠ ((𝐹𝑘)‘𝑛)) = ((2nd ‘(1st𝑈))‘𝑘))
21138adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (1...((2nd𝑇) − 1))) → 𝑁 ∈ ℕ)
21219adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (1...((2nd𝑇) − 1))) → 𝑇𝑆)
21335adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (1...((2nd𝑇) − 1))) → (2nd𝑇) ∈ (1...(𝑁 − 1)))
214 simpr 476 . . . . . . 7 ((𝜑𝑘 ∈ (1...((2nd𝑇) − 1))) → 𝑘 ∈ (1...((2nd𝑇) − 1)))
215211, 3, 212, 213, 214poimirlem6 32585 . . . . . 6 ((𝜑𝑘 ∈ (1...((2nd𝑇) − 1))) → (𝑛 ∈ (1...𝑁)((𝐹‘(𝑘 − 1))‘𝑛) ≠ ((𝐹𝑘)‘𝑛)) = ((2nd ‘(1st𝑇))‘𝑘))
216210, 215eqtr3d 2646 . . . . 5 ((𝜑𝑘 ∈ (1...((2nd𝑇) − 1))) → ((2nd ‘(1st𝑈))‘𝑘) = ((2nd ‘(1st𝑇))‘𝑘))
217199oveq1d 6564 . . . . . . . . . . 11 (𝜑 → ((2nd𝑈) + 1) = ((2nd𝑇) + 1))
218217oveq1d 6564 . . . . . . . . . 10 (𝜑 → (((2nd𝑈) + 1) + 1) = (((2nd𝑇) + 1) + 1))
219218oveq1d 6564 . . . . . . . . 9 (𝜑 → ((((2nd𝑈) + 1) + 1)...𝑁) = ((((2nd𝑇) + 1) + 1)...𝑁))
220219eleq2d 2673 . . . . . . . 8 (𝜑 → (𝑘 ∈ ((((2nd𝑈) + 1) + 1)...𝑁) ↔ 𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)))
221220biimpar 501 . . . . . . 7 ((𝜑𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)) → 𝑘 ∈ ((((2nd𝑈) + 1) + 1)...𝑁))
22238adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((((2nd𝑈) + 1) + 1)...𝑁)) → 𝑁 ∈ ℕ)
2231adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((((2nd𝑈) + 1) + 1)...𝑁)) → 𝑈𝑆)
224206adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((((2nd𝑈) + 1) + 1)...𝑁)) → (2nd𝑈) ∈ (1...(𝑁 − 1)))
225 simpr 476 . . . . . . . 8 ((𝜑𝑘 ∈ ((((2nd𝑈) + 1) + 1)...𝑁)) → 𝑘 ∈ ((((2nd𝑈) + 1) + 1)...𝑁))
226222, 3, 223, 224, 225poimirlem7 32586 . . . . . . 7 ((𝜑𝑘 ∈ ((((2nd𝑈) + 1) + 1)...𝑁)) → (𝑛 ∈ (1...𝑁)((𝐹‘(𝑘 − 2))‘𝑛) ≠ ((𝐹‘(𝑘 − 1))‘𝑛)) = ((2nd ‘(1st𝑈))‘𝑘))
227221, 226syldan 486 . . . . . 6 ((𝜑𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)) → (𝑛 ∈ (1...𝑁)((𝐹‘(𝑘 − 2))‘𝑛) ≠ ((𝐹‘(𝑘 − 1))‘𝑛)) = ((2nd ‘(1st𝑈))‘𝑘))
22838adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)) → 𝑁 ∈ ℕ)
22919adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)) → 𝑇𝑆)
23035adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)) → (2nd𝑇) ∈ (1...(𝑁 − 1)))
231 simpr 476 . . . . . . 7 ((𝜑𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)) → 𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁))
232228, 3, 229, 230, 231poimirlem7 32586 . . . . . 6 ((𝜑𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)) → (𝑛 ∈ (1...𝑁)((𝐹‘(𝑘 − 2))‘𝑛) ≠ ((𝐹‘(𝑘 − 1))‘𝑛)) = ((2nd ‘(1st𝑇))‘𝑘))
233227, 232eqtr3d 2646 . . . . 5 ((𝜑𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁)) → ((2nd ‘(1st𝑈))‘𝑘) = ((2nd ‘(1st𝑇))‘𝑘))
234216, 233jaodan 822 . . . 4 ((𝜑 ∧ (𝑘 ∈ (1...((2nd𝑇) − 1)) ∨ 𝑘 ∈ ((((2nd𝑇) + 1) + 1)...𝑁))) → ((2nd ‘(1st𝑈))‘𝑘) = ((2nd ‘(1st𝑇))‘𝑘))
235130, 234syldan 486 . . 3 ((𝜑𝑘 ∈ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) → ((2nd ‘(1st𝑈))‘𝑘) = ((2nd ‘(1st𝑇))‘𝑘))
236 fvres 6117 . . . 4 (𝑘 ∈ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) → (((2nd ‘(1st𝑈)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))‘𝑘) = ((2nd ‘(1st𝑈))‘𝑘))
237236adantl 481 . . 3 ((𝜑𝑘 ∈ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) → (((2nd ‘(1st𝑈)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))‘𝑘) = ((2nd ‘(1st𝑈))‘𝑘))
238 fvres 6117 . . . 4 (𝑘 ∈ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}) → (((2nd ‘(1st𝑇)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))‘𝑘) = ((2nd ‘(1st𝑇))‘𝑘))
239238adantl 481 . . 3 ((𝜑𝑘 ∈ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) → (((2nd ‘(1st𝑇)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))‘𝑘) = ((2nd ‘(1st𝑇))‘𝑘))
240235, 237, 2393eqtr4d 2654 . 2 ((𝜑𝑘 ∈ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) → (((2nd ‘(1st𝑈)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))‘𝑘) = (((2nd ‘(1st𝑇)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)}))‘𝑘))
24118, 34, 240eqfnfvd 6222 1 (𝜑 → ((2nd ‘(1st𝑈)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})) = ((2nd ‘(1st𝑇)) ↾ ((1...𝑁) ∖ {(2nd𝑇), ((2nd𝑇) + 1)})))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {cab 2596   ≠ wne 2780  ∃*wrmo 2899  {crab 2900  ⦋csb 3499   ∖ cdif 3537   ∪ cun 3538   ∩ cin 3539   ⊆ wss 3540  ifcif 4036  {csn 4125  {cpr 4127   class class class wbr 4583   ↦ cmpt 4643   × cxp 5036   ↾ cres 5040   “ cima 5041   Fn wfn 5799  ⟶wf 5800  –1-1-onto→wf1o 5803  ‘cfv 5804  ℩crio 6510  (class class class)co 6549   ∘𝑓 cof 6793  1st c1st 7057  2nd c2nd 7058   ↑𝑚 cmap 7744  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953   ≤ cle 9954   − cmin 10145  ℕcn 10897  2c2 10947  ℤcz 11254  ℤ≥cuz 11563  ...cfz 12197  ..^cfzo 12334 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335 This theorem is referenced by:  poimirlem9  32588
 Copyright terms: Public domain W3C validator