MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strleun Structured version   Visualization version   GIF version

Theorem strleun 15799
Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.)
Hypotheses
Ref Expression
strleun.f 𝐹 Struct ⟨𝐴, 𝐵
strleun.g 𝐺 Struct ⟨𝐶, 𝐷
strleun.l 𝐵 < 𝐶
Assertion
Ref Expression
strleun (𝐹𝐺) Struct ⟨𝐴, 𝐷

Proof of Theorem strleun
StepHypRef Expression
1 strleun.f . . . . . 6 𝐹 Struct ⟨𝐴, 𝐵
2 isstruct 15705 . . . . . 6 (𝐹 Struct ⟨𝐴, 𝐵⟩ ↔ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
31, 2mpbi 219 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵))
43simp1i 1063 . . . 4 (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵)
54simp1i 1063 . . 3 𝐴 ∈ ℕ
6 strleun.g . . . . . 6 𝐺 Struct ⟨𝐶, 𝐷
7 isstruct 15705 . . . . . 6 (𝐺 Struct ⟨𝐶, 𝐷⟩ ↔ ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷)))
86, 7mpbi 219 . . . . 5 ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷))
98simp1i 1063 . . . 4 (𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷)
109simp2i 1064 . . 3 𝐷 ∈ ℕ
114simp3i 1065 . . . . 5 𝐴𝐵
124simp2i 1064 . . . . . . 7 𝐵 ∈ ℕ
1312nnrei 10906 . . . . . 6 𝐵 ∈ ℝ
149simp1i 1063 . . . . . . 7 𝐶 ∈ ℕ
1514nnrei 10906 . . . . . 6 𝐶 ∈ ℝ
16 strleun.l . . . . . 6 𝐵 < 𝐶
1713, 15, 16ltleii 10039 . . . . 5 𝐵𝐶
185nnrei 10906 . . . . . 6 𝐴 ∈ ℝ
1918, 13, 15letri 10045 . . . . 5 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
2011, 17, 19mp2an 704 . . . 4 𝐴𝐶
219simp3i 1065 . . . 4 𝐶𝐷
2210nnrei 10906 . . . . 5 𝐷 ∈ ℝ
2318, 15, 22letri 10045 . . . 4 ((𝐴𝐶𝐶𝐷) → 𝐴𝐷)
2420, 21, 23mp2an 704 . . 3 𝐴𝐷
255, 10, 243pm3.2i 1232 . 2 (𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴𝐷)
263simp2i 1064 . . . . 5 Fun (𝐹 ∖ {∅})
278simp2i 1064 . . . . 5 Fun (𝐺 ∖ {∅})
2826, 27pm3.2i 470 . . . 4 (Fun (𝐹 ∖ {∅}) ∧ Fun (𝐺 ∖ {∅}))
29 difss 3699 . . . . . . . 8 (𝐹 ∖ {∅}) ⊆ 𝐹
30 dmss 5245 . . . . . . . 8 ((𝐹 ∖ {∅}) ⊆ 𝐹 → dom (𝐹 ∖ {∅}) ⊆ dom 𝐹)
3129, 30ax-mp 5 . . . . . . 7 dom (𝐹 ∖ {∅}) ⊆ dom 𝐹
323simp3i 1065 . . . . . . 7 dom 𝐹 ⊆ (𝐴...𝐵)
3331, 32sstri 3577 . . . . . 6 dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵)
34 difss 3699 . . . . . . . 8 (𝐺 ∖ {∅}) ⊆ 𝐺
35 dmss 5245 . . . . . . . 8 ((𝐺 ∖ {∅}) ⊆ 𝐺 → dom (𝐺 ∖ {∅}) ⊆ dom 𝐺)
3634, 35ax-mp 5 . . . . . . 7 dom (𝐺 ∖ {∅}) ⊆ dom 𝐺
378simp3i 1065 . . . . . . 7 dom 𝐺 ⊆ (𝐶...𝐷)
3836, 37sstri 3577 . . . . . 6 dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷)
39 ss2in 3802 . . . . . 6 ((dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵) ∧ dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷)) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)))
4033, 38, 39mp2an 704 . . . . 5 (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷))
41 fzdisj 12239 . . . . . 6 (𝐵 < 𝐶 → ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅)
4216, 41ax-mp 5 . . . . 5 ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅
43 sseq0 3927 . . . . 5 (((dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)) ∧ ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅)
4440, 42, 43mp2an 704 . . . 4 (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅
45 funun 5846 . . . 4 (((Fun (𝐹 ∖ {∅}) ∧ Fun (𝐺 ∖ {∅})) ∧ (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅) → Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
4628, 44, 45mp2an 704 . . 3 Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅}))
47 difundir 3839 . . . 4 ((𝐹𝐺) ∖ {∅}) = ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅}))
4847funeqi 5824 . . 3 (Fun ((𝐹𝐺) ∖ {∅}) ↔ Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
4946, 48mpbir 220 . 2 Fun ((𝐹𝐺) ∖ {∅})
50 dmun 5253 . . 3 dom (𝐹𝐺) = (dom 𝐹 ∪ dom 𝐺)
5112nnzi 11278 . . . . . . 7 𝐵 ∈ ℤ
5210nnzi 11278 . . . . . . 7 𝐷 ∈ ℤ
5313, 15, 22letri 10045 . . . . . . . 8 ((𝐵𝐶𝐶𝐷) → 𝐵𝐷)
5417, 21, 53mp2an 704 . . . . . . 7 𝐵𝐷
55 eluz2 11569 . . . . . . 7 (𝐷 ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐵𝐷))
5651, 52, 54, 55mpbir3an 1237 . . . . . 6 𝐷 ∈ (ℤ𝐵)
57 fzss2 12252 . . . . . 6 (𝐷 ∈ (ℤ𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐷))
5856, 57ax-mp 5 . . . . 5 (𝐴...𝐵) ⊆ (𝐴...𝐷)
5932, 58sstri 3577 . . . 4 dom 𝐹 ⊆ (𝐴...𝐷)
605nnzi 11278 . . . . . . 7 𝐴 ∈ ℤ
6114nnzi 11278 . . . . . . 7 𝐶 ∈ ℤ
62 eluz2 11569 . . . . . . 7 (𝐶 ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶))
6360, 61, 20, 62mpbir3an 1237 . . . . . 6 𝐶 ∈ (ℤ𝐴)
64 fzss1 12251 . . . . . 6 (𝐶 ∈ (ℤ𝐴) → (𝐶...𝐷) ⊆ (𝐴...𝐷))
6563, 64ax-mp 5 . . . . 5 (𝐶...𝐷) ⊆ (𝐴...𝐷)
6637, 65sstri 3577 . . . 4 dom 𝐺 ⊆ (𝐴...𝐷)
6759, 66unssi 3750 . . 3 (dom 𝐹 ∪ dom 𝐺) ⊆ (𝐴...𝐷)
6850, 67eqsstri 3598 . 2 dom (𝐹𝐺) ⊆ (𝐴...𝐷)
69 isstruct 15705 . 2 ((𝐹𝐺) Struct ⟨𝐴, 𝐷⟩ ↔ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴𝐷) ∧ Fun ((𝐹𝐺) ∖ {∅}) ∧ dom (𝐹𝐺) ⊆ (𝐴...𝐷)))
7025, 49, 68, 69mpbir3an 1237 1 (𝐹𝐺) Struct ⟨𝐴, 𝐷
Colors of variables: wff setvar class
Syntax hints:  wa 383  w3a 1031   = wceq 1475  wcel 1977  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125  cop 4131   class class class wbr 4583  dom cdm 5038  Fun wfun 5798  cfv 5804  (class class class)co 6549   < clt 9953  cle 9954  cn 10897  cz 11254  cuz 11563  ...cfz 12197   Struct cstr 15691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697
This theorem is referenced by:  strle2  15801  strle3  15802  srngfn  15831  lmodstr  15840  ipsstr  15847  phlstr  15857  odrngstr  15889  imasvalstr  15935  prdsvalstr  15936  ipostr  16976  psrvalstr  19184  cnfldstr  19569  eengstr  25660  algstr  36766
  Copyright terms: Public domain W3C validator