Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenuncllem Structured version   Visualization version   GIF version

Theorem caragenuncllem 39402
Description: The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenuncllem.o (𝜑𝑂 ∈ OutMeas)
caragenuncllem.s 𝑆 = (CaraGen‘𝑂)
caragenuncllem.e (𝜑𝐸𝑆)
caragenuncllem.f (𝜑𝐹𝑆)
caragenuncllem.x 𝑋 = dom 𝑂
caragenuncllem.a (𝜑𝐴𝑋)
Assertion
Ref Expression
caragenuncllem (𝜑 → ((𝑂‘(𝐴 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝐴 ∖ (𝐸𝐹)))) = (𝑂𝐴))

Proof of Theorem caragenuncllem
StepHypRef Expression
1 caragenuncllem.o . . . . . 6 (𝜑𝑂 ∈ OutMeas)
2 caragenuncllem.s . . . . . 6 𝑆 = (CaraGen‘𝑂)
3 caragenuncllem.x . . . . . 6 𝑋 = dom 𝑂
4 caragenuncllem.e . . . . . 6 (𝜑𝐸𝑆)
5 caragenuncllem.a . . . . . . 7 (𝜑𝐴𝑋)
65ssinss1d 38239 . . . . . 6 (𝜑 → (𝐴 ∩ (𝐸𝐹)) ⊆ 𝑋)
71, 2, 3, 4, 6caragensplit 39390 . . . . 5 (𝜑 → ((𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) +𝑒 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸))) = (𝑂‘(𝐴 ∩ (𝐸𝐹))))
87eqcomd 2616 . . . 4 (𝜑 → (𝑂‘(𝐴 ∩ (𝐸𝐹))) = ((𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) +𝑒 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸))))
9 inass 3785 . . . . . . . 8 ((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸) = (𝐴 ∩ ((𝐸𝐹) ∩ 𝐸))
10 incom 3767 . . . . . . . . . 10 ((𝐸𝐹) ∩ 𝐸) = (𝐸 ∩ (𝐸𝐹))
11 inabs 3817 . . . . . . . . . 10 (𝐸 ∩ (𝐸𝐹)) = 𝐸
1210, 11eqtri 2632 . . . . . . . . 9 ((𝐸𝐹) ∩ 𝐸) = 𝐸
1312ineq2i 3773 . . . . . . . 8 (𝐴 ∩ ((𝐸𝐹) ∩ 𝐸)) = (𝐴𝐸)
149, 13eqtri 2632 . . . . . . 7 ((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸) = (𝐴𝐸)
1514fveq2i 6106 . . . . . 6 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) = (𝑂‘(𝐴𝐸))
16 incom 3767 . . . . . . . . . 10 ((𝐴𝐸) ∩ 𝐹) = (𝐹 ∩ (𝐴𝐸))
17 indifcom 3831 . . . . . . . . . 10 (𝐹 ∩ (𝐴𝐸)) = (𝐴 ∩ (𝐹𝐸))
1816, 17eqtr2i 2633 . . . . . . . . 9 (𝐴 ∩ (𝐹𝐸)) = ((𝐴𝐸) ∩ 𝐹)
1918eqcomi 2619 . . . . . . . 8 ((𝐴𝐸) ∩ 𝐹) = (𝐴 ∩ (𝐹𝐸))
20 difundir 3839 . . . . . . . . . 10 ((𝐸𝐹) ∖ 𝐸) = ((𝐸𝐸) ∪ (𝐹𝐸))
21 difid 3902 . . . . . . . . . . 11 (𝐸𝐸) = ∅
2221uneq1i 3725 . . . . . . . . . 10 ((𝐸𝐸) ∪ (𝐹𝐸)) = (∅ ∪ (𝐹𝐸))
23 0un 38240 . . . . . . . . . 10 (∅ ∪ (𝐹𝐸)) = (𝐹𝐸)
2420, 22, 233eqtrri 2637 . . . . . . . . 9 (𝐹𝐸) = ((𝐸𝐹) ∖ 𝐸)
2524ineq2i 3773 . . . . . . . 8 (𝐴 ∩ (𝐹𝐸)) = (𝐴 ∩ ((𝐸𝐹) ∖ 𝐸))
26 indif2 3829 . . . . . . . 8 (𝐴 ∩ ((𝐸𝐹) ∖ 𝐸)) = ((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸)
2719, 25, 263eqtrri 2637 . . . . . . 7 ((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸) = ((𝐴𝐸) ∩ 𝐹)
2827fveq2i 6106 . . . . . 6 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸)) = (𝑂‘((𝐴𝐸) ∩ 𝐹))
2915, 28oveq12i 6561 . . . . 5 ((𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) +𝑒 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹)))
3029a1i 11 . . . 4 (𝜑 → ((𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) +𝑒 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))))
31 eqidd 2611 . . . 4 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))))
328, 30, 313eqtrd 2648 . . 3 (𝜑 → (𝑂‘(𝐴 ∩ (𝐸𝐹))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))))
33 difun1 3846 . . . . 5 (𝐴 ∖ (𝐸𝐹)) = ((𝐴𝐸) ∖ 𝐹)
3433fveq2i 6106 . . . 4 (𝑂‘(𝐴 ∖ (𝐸𝐹))) = (𝑂‘((𝐴𝐸) ∖ 𝐹))
3534a1i 11 . . 3 (𝜑 → (𝑂‘(𝐴 ∖ (𝐸𝐹))) = (𝑂‘((𝐴𝐸) ∖ 𝐹)))
3632, 35oveq12d 6567 . 2 (𝜑 → ((𝑂‘(𝐴 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝐴 ∖ (𝐸𝐹)))) = (((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹))))
375ssinss1d 38239 . . . . 5 (𝜑 → (𝐴𝐸) ⊆ 𝑋)
381, 3, 37omexrcl 39397 . . . 4 (𝜑 → (𝑂‘(𝐴𝐸)) ∈ ℝ*)
391, 3, 37omecl 39393 . . . . 5 (𝜑 → (𝑂‘(𝐴𝐸)) ∈ (0[,]+∞))
4039xrge0nemnfd 38489 . . . 4 (𝜑 → (𝑂‘(𝐴𝐸)) ≠ -∞)
4138, 40jca 553 . . 3 (𝜑 → ((𝑂‘(𝐴𝐸)) ∈ ℝ* ∧ (𝑂‘(𝐴𝐸)) ≠ -∞))
42 caragenuncllem.f . . . . . . 7 (𝜑𝐹𝑆)
431, 2, 42, 3caragenelss 39391 . . . . . 6 (𝜑𝐹𝑋)
4443ssinss2d 38253 . . . . 5 (𝜑 → ((𝐴𝐸) ∩ 𝐹) ⊆ 𝑋)
451, 3, 44omexrcl 39397 . . . 4 (𝜑 → (𝑂‘((𝐴𝐸) ∩ 𝐹)) ∈ ℝ*)
461, 3, 44omecl 39393 . . . . 5 (𝜑 → (𝑂‘((𝐴𝐸) ∩ 𝐹)) ∈ (0[,]+∞))
4746xrge0nemnfd 38489 . . . 4 (𝜑 → (𝑂‘((𝐴𝐸) ∩ 𝐹)) ≠ -∞)
4845, 47jca 553 . . 3 (𝜑 → ((𝑂‘((𝐴𝐸) ∩ 𝐹)) ∈ ℝ* ∧ (𝑂‘((𝐴𝐸) ∩ 𝐹)) ≠ -∞))
495ssdifssd 3710 . . . . . 6 (𝜑 → (𝐴𝐸) ⊆ 𝑋)
5049ssdifssd 3710 . . . . 5 (𝜑 → ((𝐴𝐸) ∖ 𝐹) ⊆ 𝑋)
511, 3, 50omexrcl 39397 . . . 4 (𝜑 → (𝑂‘((𝐴𝐸) ∖ 𝐹)) ∈ ℝ*)
521, 3, 50omecl 39393 . . . . 5 (𝜑 → (𝑂‘((𝐴𝐸) ∖ 𝐹)) ∈ (0[,]+∞))
5352xrge0nemnfd 38489 . . . 4 (𝜑 → (𝑂‘((𝐴𝐸) ∖ 𝐹)) ≠ -∞)
5451, 53jca 553 . . 3 (𝜑 → ((𝑂‘((𝐴𝐸) ∖ 𝐹)) ∈ ℝ* ∧ (𝑂‘((𝐴𝐸) ∖ 𝐹)) ≠ -∞))
55 xaddass 11951 . . 3 ((((𝑂‘(𝐴𝐸)) ∈ ℝ* ∧ (𝑂‘(𝐴𝐸)) ≠ -∞) ∧ ((𝑂‘((𝐴𝐸) ∩ 𝐹)) ∈ ℝ* ∧ (𝑂‘((𝐴𝐸) ∩ 𝐹)) ≠ -∞) ∧ ((𝑂‘((𝐴𝐸) ∖ 𝐹)) ∈ ℝ* ∧ (𝑂‘((𝐴𝐸) ∖ 𝐹)) ≠ -∞)) → (((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹))) = ((𝑂‘(𝐴𝐸)) +𝑒 ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹)))))
5641, 48, 54, 55syl3anc 1318 . 2 (𝜑 → (((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹))) = ((𝑂‘(𝐴𝐸)) +𝑒 ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹)))))
571, 2, 3, 42, 49caragensplit 39390 . . . 4 (𝜑 → ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹))) = (𝑂‘(𝐴𝐸)))
5857oveq2d 6565 . . 3 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹)))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))))
591, 2, 3, 4, 5caragensplit 39390 . . 3 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))) = (𝑂𝐴))
6058, 59eqtrd 2644 . 2 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹)))) = (𝑂𝐴))
6136, 56, 603eqtrd 2648 1 (𝜑 → ((𝑂‘(𝐴 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝐴 ∖ (𝐸𝐹)))) = (𝑂𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874   cuni 4372  dom cdm 5038  cfv 5804  (class class class)co 6549  -∞cmnf 9951  *cxr 9952   +𝑒 cxad 11820  OutMeascome 39379  CaraGenccaragen 39381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-addass 9880  ax-i2m1 9883  ax-1ne0 9884  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-xadd 11823  df-icc 12053  df-ome 39380  df-caragen 39382
This theorem is referenced by:  caragenuncl  39403
  Copyright terms: Public domain W3C validator