MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrtoslem2 Structured version   Visualization version   GIF version

Theorem opsrtoslem2 19306
Description: Lemma for opsrtos 19307. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
opsrso.o 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
opsrso.i (𝜑𝐼𝑉)
opsrso.r (𝜑𝑅 ∈ Toset)
opsrso.t (𝜑𝑇 ⊆ (𝐼 × 𝐼))
opsrso.w (𝜑𝑇 We 𝐼)
opsrtoslem.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrtoslem.b 𝐵 = (Base‘𝑆)
opsrtoslem.q < = (lt‘𝑅)
opsrtoslem.c 𝐶 = (𝑇 <bag 𝐼)
opsrtoslem.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
opsrtoslem.ps (𝜓 ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))
opsrtoslem.l = (le‘𝑂)
Assertion
Ref Expression
opsrtoslem2 (𝜑𝑂 ∈ Toset)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑤,𝑦,𝑧,𝐶   𝑤,,𝑥,𝑦,𝑧,𝐼   𝜑,,𝑤,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧   𝑤, < ,𝑥,𝑦,𝑧   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑇,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑤,)   𝐵(𝑧,𝑤,)   𝐶()   𝐷()   𝑅()   𝑆(𝑥,𝑦,𝑧,𝑤,)   < ()   𝑇()   (𝑥,𝑦,𝑧,𝑤,)   𝑂(𝑥,𝑦,𝑧,𝑤,)   𝑉(𝑥,𝑦,𝑧,𝑤,)

Proof of Theorem opsrtoslem2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opsrtoslem.d . . . . . . . 8 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
2 ovex 6577 . . . . . . . 8 (ℕ0𝑚 𝐼) ∈ V
31, 2rabex2 4742 . . . . . . 7 𝐷 ∈ V
4 opsrtoslem.c . . . . . . . 8 𝐶 = (𝑇 <bag 𝐼)
5 opsrso.i . . . . . . . 8 (𝜑𝐼𝑉)
6 xpexg 6858 . . . . . . . . . 10 ((𝐼𝑉𝐼𝑉) → (𝐼 × 𝐼) ∈ V)
75, 5, 6syl2anc 691 . . . . . . . . 9 (𝜑 → (𝐼 × 𝐼) ∈ V)
8 opsrso.t . . . . . . . . 9 (𝜑𝑇 ⊆ (𝐼 × 𝐼))
97, 8ssexd 4733 . . . . . . . 8 (𝜑𝑇 ∈ V)
10 opsrso.w . . . . . . . 8 (𝜑𝑇 We 𝐼)
114, 1, 5, 9, 10ltbwe 19293 . . . . . . 7 (𝜑𝐶 We 𝐷)
12 opsrso.r . . . . . . . . 9 (𝜑𝑅 ∈ Toset)
13 eqid 2610 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2610 . . . . . . . . . . 11 (le‘𝑅) = (le‘𝑅)
15 opsrtoslem.q . . . . . . . . . . 11 < = (lt‘𝑅)
1613, 14, 15tosso 16859 . . . . . . . . . 10 (𝑅 ∈ Toset → (𝑅 ∈ Toset ↔ ( < Or (Base‘𝑅) ∧ ( I ↾ (Base‘𝑅)) ⊆ (le‘𝑅))))
1716ibi 255 . . . . . . . . 9 (𝑅 ∈ Toset → ( < Or (Base‘𝑅) ∧ ( I ↾ (Base‘𝑅)) ⊆ (le‘𝑅)))
1812, 17syl 17 . . . . . . . 8 (𝜑 → ( < Or (Base‘𝑅) ∧ ( I ↾ (Base‘𝑅)) ⊆ (le‘𝑅)))
1918simpld 474 . . . . . . 7 (𝜑< Or (Base‘𝑅))
20 opsrtoslem.ps . . . . . . . . 9 (𝜓 ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))
2120opabbii 4649 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
2221wemapso 8339 . . . . . . 7 ((𝐷 ∈ V ∧ 𝐶 We 𝐷< Or (Base‘𝑅)) → {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or ((Base‘𝑅) ↑𝑚 𝐷))
233, 11, 19, 22mp3an2i 1421 . . . . . 6 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or ((Base‘𝑅) ↑𝑚 𝐷))
24 opsrtoslem.s . . . . . . . 8 𝑆 = (𝐼 mPwSer 𝑅)
25 opsrtoslem.b . . . . . . . 8 𝐵 = (Base‘𝑆)
2624, 13, 1, 25, 5psrbas 19199 . . . . . . 7 (𝜑𝐵 = ((Base‘𝑅) ↑𝑚 𝐷))
27 soeq2 4979 . . . . . . 7 (𝐵 = ((Base‘𝑅) ↑𝑚 𝐷) → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} Or 𝐵 ↔ {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or ((Base‘𝑅) ↑𝑚 𝐷)))
2826, 27syl 17 . . . . . 6 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} Or 𝐵 ↔ {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or ((Base‘𝑅) ↑𝑚 𝐷)))
2923, 28mpbird 246 . . . . 5 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or 𝐵)
30 soinxp 5106 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ 𝜓} Or 𝐵 ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵)
3129, 30sylib 207 . . . 4 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵)
32 opsrso.o . . . . . . . 8 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
33 fvex 6113 . . . . . . . 8 ((𝐼 ordPwSer 𝑅)‘𝑇) ∈ V
3432, 33eqeltri 2684 . . . . . . 7 𝑂 ∈ V
35 opsrtoslem.l . . . . . . . 8 = (le‘𝑂)
36 eqid 2610 . . . . . . . 8 (lt‘𝑂) = (lt‘𝑂)
3735, 36pltfval 16782 . . . . . . 7 (𝑂 ∈ V → (lt‘𝑂) = ( ∖ I ))
3834, 37ax-mp 5 . . . . . 6 (lt‘𝑂) = ( ∖ I )
39 difundir 3839 . . . . . . . 8 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I ) = ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ (( I ↾ 𝐵) ∖ I ))
40 resss 5342 . . . . . . . . . 10 ( I ↾ 𝐵) ⊆ I
41 ssdif0 3896 . . . . . . . . . 10 (( I ↾ 𝐵) ⊆ I ↔ (( I ↾ 𝐵) ∖ I ) = ∅)
4240, 41mpbi 219 . . . . . . . . 9 (( I ↾ 𝐵) ∖ I ) = ∅
4342uneq2i 3726 . . . . . . . 8 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ (( I ↾ 𝐵) ∖ I )) = ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ ∅)
44 un0 3919 . . . . . . . 8 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ ∅) = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I )
4539, 43, 443eqtri 2636 . . . . . . 7 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I ) = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I )
4632, 5, 12, 8, 10, 24, 25, 15, 4, 1, 20, 35opsrtoslem1 19305 . . . . . . . 8 (𝜑 = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)))
4746difeq1d 3689 . . . . . . 7 (𝜑 → ( ∖ I ) = ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I ))
48 inss2 3796 . . . . . . . . . . . 12 ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵)
49 relxp 5150 . . . . . . . . . . . 12 Rel (𝐵 × 𝐵)
50 relss 5129 . . . . . . . . . . . 12 (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵) → (Rel (𝐵 × 𝐵) → Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
5148, 49, 50mp2 9 . . . . . . . . . . 11 Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))
5251a1i 11 . . . . . . . . . 10 (𝜑 → Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)))
53 df-br 4584 . . . . . . . . . . . . . 14 (𝑎 I 𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ I )
54 vex 3176 . . . . . . . . . . . . . . 15 𝑏 ∈ V
5554ideq 5196 . . . . . . . . . . . . . 14 (𝑎 I 𝑏𝑎 = 𝑏)
5653, 55bitr3i 265 . . . . . . . . . . . . 13 (⟨𝑎, 𝑏⟩ ∈ I ↔ 𝑎 = 𝑏)
57 brin 4634 . . . . . . . . . . . . . . . . . 18 (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ (𝑎{⟨𝑥, 𝑦⟩ ∣ 𝜓}𝑎𝑎(𝐵 × 𝐵)𝑎))
5857simprbi 479 . . . . . . . . . . . . . . . . 17 (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎𝑎(𝐵 × 𝐵)𝑎)
59 brxp 5071 . . . . . . . . . . . . . . . . . 18 (𝑎(𝐵 × 𝐵)𝑎 ↔ (𝑎𝐵𝑎𝐵))
6059simprbi 479 . . . . . . . . . . . . . . . . 17 (𝑎(𝐵 × 𝐵)𝑎𝑎𝐵)
6158, 60syl 17 . . . . . . . . . . . . . . . 16 (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎𝑎𝐵)
62 sonr 4980 . . . . . . . . . . . . . . . . 17 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵𝑎𝐵) → ¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎)
6362ex 449 . . . . . . . . . . . . . . . 16 (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵 → (𝑎𝐵 → ¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎))
6431, 61, 63syl2im 39 . . . . . . . . . . . . . . 15 (𝜑 → (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 → ¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎))
6564pm2.01d 180 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎)
66 breq2 4587 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑏 → (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑏))
67 df-br 4584 . . . . . . . . . . . . . . . 16 (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)))
6866, 67syl6bb 275 . . . . . . . . . . . . . . 15 (𝑎 = 𝑏 → (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
6968notbid 307 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
7065, 69syl5ibcom 234 . . . . . . . . . . . . 13 (𝜑 → (𝑎 = 𝑏 → ¬ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
7156, 70syl5bi 231 . . . . . . . . . . . 12 (𝜑 → (⟨𝑎, 𝑏⟩ ∈ I → ¬ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
7271con2d 128 . . . . . . . . . . 11 (𝜑 → (⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) → ¬ ⟨𝑎, 𝑏⟩ ∈ I ))
73 opex 4859 . . . . . . . . . . . 12 𝑎, 𝑏⟩ ∈ V
74 eldif 3550 . . . . . . . . . . . 12 (⟨𝑎, 𝑏⟩ ∈ (V ∖ I ) ↔ (⟨𝑎, 𝑏⟩ ∈ V ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ I ))
7573, 74mpbiran 955 . . . . . . . . . . 11 (⟨𝑎, 𝑏⟩ ∈ (V ∖ I ) ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ I )
7672, 75syl6ibr 241 . . . . . . . . . 10 (𝜑 → (⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) → ⟨𝑎, 𝑏⟩ ∈ (V ∖ I )))
7752, 76relssdv 5135 . . . . . . . . 9 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (V ∖ I ))
78 disj2 3976 . . . . . . . . 9 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅ ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (V ∖ I ))
7977, 78sylibr 223 . . . . . . . 8 (𝜑 → (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅)
80 disj3 3973 . . . . . . . 8 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅ ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ))
8179, 80sylib 207 . . . . . . 7 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ))
8245, 47, 813eqtr4a 2670 . . . . . 6 (𝜑 → ( ∖ I ) = ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)))
8338, 82syl5eq 2656 . . . . 5 (𝜑 → (lt‘𝑂) = ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)))
84 soeq1 4978 . . . . 5 ((lt‘𝑂) = ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) → ((lt‘𝑂) Or 𝐵 ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵))
8583, 84syl 17 . . . 4 (𝜑 → ((lt‘𝑂) Or 𝐵 ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵))
8631, 85mpbird 246 . . 3 (𝜑 → (lt‘𝑂) Or 𝐵)
8724, 32, 8opsrbas 19300 . . . . 5 (𝜑 → (Base‘𝑆) = (Base‘𝑂))
8825, 87syl5eq 2656 . . . 4 (𝜑𝐵 = (Base‘𝑂))
89 soeq2 4979 . . . 4 (𝐵 = (Base‘𝑂) → ((lt‘𝑂) Or 𝐵 ↔ (lt‘𝑂) Or (Base‘𝑂)))
9088, 89syl 17 . . 3 (𝜑 → ((lt‘𝑂) Or 𝐵 ↔ (lt‘𝑂) Or (Base‘𝑂)))
9186, 90mpbid 221 . 2 (𝜑 → (lt‘𝑂) Or (Base‘𝑂))
9288reseq2d 5317 . . . 4 (𝜑 → ( I ↾ 𝐵) = ( I ↾ (Base‘𝑂)))
93 ssun2 3739 . . . 4 ( I ↾ 𝐵) ⊆ (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵))
9492, 93syl6eqssr 3619 . . 3 (𝜑 → ( I ↾ (Base‘𝑂)) ⊆ (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)))
9594, 46sseqtr4d 3605 . 2 (𝜑 → ( I ↾ (Base‘𝑂)) ⊆ )
96 eqid 2610 . . . 4 (Base‘𝑂) = (Base‘𝑂)
9796, 35, 36tosso 16859 . . 3 (𝑂 ∈ V → (𝑂 ∈ Toset ↔ ((lt‘𝑂) Or (Base‘𝑂) ∧ ( I ↾ (Base‘𝑂)) ⊆ )))
9834, 97ax-mp 5 . 2 (𝑂 ∈ Toset ↔ ((lt‘𝑂) Or (Base‘𝑂) ∧ ( I ↾ (Base‘𝑂)) ⊆ ))
9991, 95, 98sylanbrc 695 1 (𝜑𝑂 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  cop 4131   class class class wbr 4583  {copab 4642   I cid 4948   Or wor 4958   We wwe 4996   × cxp 5036  ccnv 5037  cres 5040  cima 5041  Rel wrel 5043  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Fincfn 7841  cn 10897  0cn0 11169  Basecbs 15695  lecple 15775  ltcplt 16764  Tosetctos 16856   mPwSer cmps 19172   <bag cltb 19175   ordPwSer copws 19176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seqom 7430  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-oexp 7453  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-cnf 8442  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-tset 15787  df-ple 15788  df-preset 16751  df-poset 16769  df-plt 16781  df-toset 16857  df-psr 19177  df-ltbag 19180  df-opsr 19181
This theorem is referenced by:  opsrtos  19307
  Copyright terms: Public domain W3C validator