MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrtoslem2 Structured version   Unicode version

Theorem opsrtoslem2 17498
Description: Lemma for opsrtos 17499. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
opsrso.o  |-  O  =  ( ( I ordPwSer  R
) `  T )
opsrso.i  |-  ( ph  ->  I  e.  V )
opsrso.r  |-  ( ph  ->  R  e. Toset )
opsrso.t  |-  ( ph  ->  T  C_  ( I  X.  I ) )
opsrso.w  |-  ( ph  ->  T  We  I )
opsrtoslem.s  |-  S  =  ( I mPwSer  R )
opsrtoslem.b  |-  B  =  ( Base `  S
)
opsrtoslem.q  |-  .<  =  ( lt `  R )
opsrtoslem.c  |-  C  =  ( T  <bag  I )
opsrtoslem.d  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
opsrtoslem.ps  |-  ( ps  <->  E. z  e.  D  ( ( x `  z
)  .<  ( y `  z )  /\  A. w  e.  D  (
w C z  -> 
( x `  w
)  =  ( y `
 w ) ) ) )
opsrtoslem.l  |-  .<_  =  ( le `  O )
Assertion
Ref Expression
opsrtoslem2  |-  ( ph  ->  O  e. Toset )
Distinct variable groups:    x, y, B    x, w, y, z, C    w, h, x, y, z, I    ph, h, w, x, y, z    w, D, x, y, z    w,  .< , x, y, z    w, R, x, y, z    w, T, x, y, z
Allowed substitution hints:    ps( x, y, z, w, h)    B( z, w, h)    C( h)    D( h)    R( h)    S( x, y, z, w, h)    .< ( h)    T( h)   
.<_ ( x, y, z, w, h)    O( x, y, z, w, h)    V( x, y, z, w, h)

Proof of Theorem opsrtoslem2
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opsrtoslem.d . . . . . . . . 9  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
2 ovex 6105 . . . . . . . . . 10  |-  ( NN0 
^m  I )  e. 
_V
32rabex 4431 . . . . . . . . 9  |-  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  e.  _V
41, 3eqeltri 2503 . . . . . . . 8  |-  D  e. 
_V
54a1i 11 . . . . . . 7  |-  ( ph  ->  D  e.  _V )
6 opsrtoslem.c . . . . . . . 8  |-  C  =  ( T  <bag  I )
7 opsrso.i . . . . . . . 8  |-  ( ph  ->  I  e.  V )
8 xpexg 6496 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  I  e.  V )  ->  ( I  X.  I
)  e.  _V )
97, 7, 8syl2anc 654 . . . . . . . . 9  |-  ( ph  ->  ( I  X.  I
)  e.  _V )
10 opsrso.t . . . . . . . . 9  |-  ( ph  ->  T  C_  ( I  X.  I ) )
119, 10ssexd 4427 . . . . . . . 8  |-  ( ph  ->  T  e.  _V )
12 opsrso.w . . . . . . . 8  |-  ( ph  ->  T  We  I )
136, 1, 7, 11, 12ltbwe 17486 . . . . . . 7  |-  ( ph  ->  C  We  D )
14 opsrso.r . . . . . . . . 9  |-  ( ph  ->  R  e. Toset )
15 eqid 2433 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
16 eqid 2433 . . . . . . . . . . 11  |-  ( le
`  R )  =  ( le `  R
)
17 opsrtoslem.q . . . . . . . . . . 11  |-  .<  =  ( lt `  R )
1815, 16, 17tosso 15189 . . . . . . . . . 10  |-  ( R  e. Toset  ->  ( R  e. Toset  <->  ( 
.<  Or  ( Base `  R
)  /\  (  _I  |`  ( Base `  R
) )  C_  ( le `  R ) ) ) )
1918ibi 241 . . . . . . . . 9  |-  ( R  e. Toset  ->  (  .<  Or  ( Base `  R )  /\  (  _I  |`  ( Base `  R ) )  C_  ( le `  R ) ) )
2014, 19syl 16 . . . . . . . 8  |-  ( ph  ->  (  .<  Or  ( Base `  R )  /\  (  _I  |`  ( Base `  R ) )  C_  ( le `  R ) ) )
2120simpld 456 . . . . . . 7  |-  ( ph  ->  .<  Or  ( Base `  R ) )
22 opsrtoslem.ps . . . . . . . . 9  |-  ( ps  <->  E. z  e.  D  ( ( x `  z
)  .<  ( y `  z )  /\  A. w  e.  D  (
w C z  -> 
( x `  w
)  =  ( y `
 w ) ) ) )
2322opabbii 4344 . . . . . . . 8  |-  { <. x ,  y >.  |  ps }  =  { <. x ,  y >.  |  E. z  e.  D  (
( x `  z
)  .<  ( y `  z )  /\  A. w  e.  D  (
w C z  -> 
( x `  w
)  =  ( y `
 w ) ) ) }
2423wemapso 7753 . . . . . . 7  |-  ( ( D  e.  _V  /\  C  We  D  /\  .<  Or  ( Base `  R
) )  ->  { <. x ,  y >.  |  ps }  Or  ( ( Base `  R )  ^m  D ) )
255, 13, 21, 24syl3anc 1211 . . . . . 6  |-  ( ph  ->  { <. x ,  y
>.  |  ps }  Or  ( ( Base `  R
)  ^m  D )
)
26 opsrtoslem.s . . . . . . . 8  |-  S  =  ( I mPwSer  R )
27 opsrtoslem.b . . . . . . . 8  |-  B  =  ( Base `  S
)
2826, 15, 1, 27, 7psrbas 17382 . . . . . . 7  |-  ( ph  ->  B  =  ( (
Base `  R )  ^m  D ) )
29 soeq2 4648 . . . . . . 7  |-  ( B  =  ( ( Base `  R )  ^m  D
)  ->  ( { <. x ,  y >.  |  ps }  Or  B  <->  {
<. x ,  y >.  |  ps }  Or  (
( Base `  R )  ^m  D ) ) )
3028, 29syl 16 . . . . . 6  |-  ( ph  ->  ( { <. x ,  y >.  |  ps }  Or  B  <->  { <. x ,  y >.  |  ps }  Or  ( ( Base `  R )  ^m  D ) ) )
3125, 30mpbird 232 . . . . 5  |-  ( ph  ->  { <. x ,  y
>.  |  ps }  Or  B )
32 soinxp 4890 . . . . 5  |-  ( {
<. x ,  y >.  |  ps }  Or  B  <->  ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  Or  B
)
3331, 32sylib 196 . . . 4  |-  ( ph  ->  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  Or  B )
34 opsrso.o . . . . . . . 8  |-  O  =  ( ( I ordPwSer  R
) `  T )
35 fvex 5689 . . . . . . . 8  |-  ( ( I ordPwSer  R ) `  T
)  e.  _V
3634, 35eqeltri 2503 . . . . . . 7  |-  O  e. 
_V
37 opsrtoslem.l . . . . . . . 8  |-  .<_  =  ( le `  O )
38 eqid 2433 . . . . . . . 8  |-  ( lt
`  O )  =  ( lt `  O
)
3937, 38pltfval 15112 . . . . . . 7  |-  ( O  e.  _V  ->  ( lt `  O )  =  (  .<_  \  _I  )
)
4036, 39ax-mp 5 . . . . . 6  |-  ( lt
`  O )  =  (  .<_  \  _I  )
41 difundir 3591 . . . . . . . 8  |-  ( ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  u.  (  _I  |`  B ) )  \  _I  )  =  ( ( ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  \  _I  )  u.  ( (  _I  |`  B )  \  _I  ) )
42 resss 5122 . . . . . . . . . 10  |-  (  _I  |`  B )  C_  _I
43 ssdif0 3725 . . . . . . . . . 10  |-  ( (  _I  |`  B )  C_  _I  <->  ( (  _I  |`  B )  \  _I  )  =  (/) )
4442, 43mpbi 208 . . . . . . . . 9  |-  ( (  _I  |`  B )  \  _I  )  =  (/)
4544uneq2i 3495 . . . . . . . 8  |-  ( ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  \  _I  )  u.  (
(  _I  |`  B ) 
\  _I  ) )  =  ( ( ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  \  _I  )  u.  (/) )
46 un0 3650 . . . . . . . 8  |-  ( ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  \  _I  )  u.  (/) )  =  ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  \  _I  )
4741, 45, 463eqtri 2457 . . . . . . 7  |-  ( ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  u.  (  _I  |`  B ) )  \  _I  )  =  ( ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) 
\  _I  )
4834, 7, 14, 10, 12, 26, 27, 17, 6, 1, 22, 37opsrtoslem1 17497 . . . . . . . 8  |-  ( ph  -> 
.<_  =  ( ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  u.  (  _I  |`  B ) ) )
4948difeq1d 3461 . . . . . . 7  |-  ( ph  ->  (  .<_  \  _I  )  =  ( ( ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  u.  (  _I  |`  B ) ) 
\  _I  ) )
50 inss2 3559 . . . . . . . . . . . 12  |-  ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) 
C_  ( B  X.  B )
51 relxp 4934 . . . . . . . . . . . 12  |-  Rel  ( B  X.  B )
52 relss 4914 . . . . . . . . . . . 12  |-  ( ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  C_  ( B  X.  B )  -> 
( Rel  ( B  X.  B )  ->  Rel  ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) ) ) )
5350, 51, 52mp2 9 . . . . . . . . . . 11  |-  Rel  ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )
5453a1i 11 . . . . . . . . . 10  |-  ( ph  ->  Rel  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) )
55 df-br 4281 . . . . . . . . . . . . . 14  |-  ( a  _I  b  <->  <. a ,  b >.  e.  _I  )
56 vex 2965 . . . . . . . . . . . . . . 15  |-  b  e. 
_V
5756ideq 4979 . . . . . . . . . . . . . 14  |-  ( a  _I  b  <->  a  =  b )
5855, 57bitr3i 251 . . . . . . . . . . . . 13  |-  ( <.
a ,  b >.  e.  _I  <->  a  =  b )
59 brin 4329 . . . . . . . . . . . . . . . . . 18  |-  ( a ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a  <-> 
( a { <. x ,  y >.  |  ps } a  /\  a
( B  X.  B
) a ) )
6059simprbi 461 . . . . . . . . . . . . . . . . 17  |-  ( a ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a  ->  a ( B  X.  B ) a )
61 brxp 4857 . . . . . . . . . . . . . . . . . 18  |-  ( a ( B  X.  B
) a  <->  ( a  e.  B  /\  a  e.  B ) )
6261simprbi 461 . . . . . . . . . . . . . . . . 17  |-  ( a ( B  X.  B
) a  ->  a  e.  B )
6360, 62syl 16 . . . . . . . . . . . . . . . 16  |-  ( a ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a  ->  a  e.  B
)
64 sonr 4649 . . . . . . . . . . . . . . . . 17  |-  ( ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  Or  B  /\  a  e.  B )  ->  -.  a ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a )
6564ex 434 . . . . . . . . . . . . . . . 16  |-  ( ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  Or  B  ->  ( a  e.  B  ->  -.  a ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a ) )
6633, 63, 65syl2im 38 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( a ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a  ->  -.  a
( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a ) )
6766pm2.01d 169 . . . . . . . . . . . . . 14  |-  ( ph  ->  -.  a ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a )
68 breq2 4284 . . . . . . . . . . . . . . . 16  |-  ( a  =  b  ->  (
a ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a  <-> 
a ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) b ) )
69 df-br 4281 . . . . . . . . . . . . . . . 16  |-  ( a ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) b  <->  <. a ,  b >.  e.  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) )
7068, 69syl6bb 261 . . . . . . . . . . . . . . 15  |-  ( a  =  b  ->  (
a ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a  <->  <. a ,  b >.  e.  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) ) )
7170notbid 294 . . . . . . . . . . . . . 14  |-  ( a  =  b  ->  ( -.  a ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a  <->  -.  <. a ,  b
>.  e.  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) ) )
7267, 71syl5ibcom 220 . . . . . . . . . . . . 13  |-  ( ph  ->  ( a  =  b  ->  -.  <. a ,  b >.  e.  ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) ) ) )
7358, 72syl5bi 217 . . . . . . . . . . . 12  |-  ( ph  ->  ( <. a ,  b
>.  e.  _I  ->  -.  <.
a ,  b >.  e.  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) ) )
7473con2d 115 . . . . . . . . . . 11  |-  ( ph  ->  ( <. a ,  b
>.  e.  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  ->  -.  <. a ,  b
>.  e.  _I  ) )
75 opex 4544 . . . . . . . . . . . 12  |-  <. a ,  b >.  e.  _V
76 eldif 3326 . . . . . . . . . . . 12  |-  ( <.
a ,  b >.  e.  ( _V  \  _I  ) 
<->  ( <. a ,  b
>.  e.  _V  /\  -.  <.
a ,  b >.  e.  _I  ) )
7775, 76mpbiran 902 . . . . . . . . . . 11  |-  ( <.
a ,  b >.  e.  ( _V  \  _I  ) 
<->  -.  <. a ,  b
>.  e.  _I  )
7874, 77syl6ibr 227 . . . . . . . . . 10  |-  ( ph  ->  ( <. a ,  b
>.  e.  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  ->  <. a ,  b >.  e.  ( _V  \  _I  ) ) )
7954, 78relssdv 4919 . . . . . . . . 9  |-  ( ph  ->  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  C_  ( _V  \  _I  )
)
80 disj2 3714 . . . . . . . . 9  |-  ( ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  i^i 
_I  )  =  (/)  <->  ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  C_  ( _V  \  _I  ) )
8179, 80sylibr 212 . . . . . . . 8  |-  ( ph  ->  ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  i^i 
_I  )  =  (/) )
82 disj3 3711 . . . . . . . 8  |-  ( ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  i^i 
_I  )  =  (/)  <->  ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  =  ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  \  _I  ) )
8381, 82sylib 196 . . . . . . 7  |-  ( ph  ->  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  =  ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  \  _I  ) )
8447, 49, 833eqtr4a 2491 . . . . . 6  |-  ( ph  ->  (  .<_  \  _I  )  =  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) )
8540, 84syl5eq 2477 . . . . 5  |-  ( ph  ->  ( lt `  O
)  =  ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) )
86 soeq1 4647 . . . . 5  |-  ( ( lt `  O )  =  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  -> 
( ( lt `  O )  Or  B  <->  ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  Or  B
) )
8785, 86syl 16 . . . 4  |-  ( ph  ->  ( ( lt `  O )  Or  B  <->  ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  Or  B
) )
8833, 87mpbird 232 . . 3  |-  ( ph  ->  ( lt `  O
)  Or  B )
8926, 34, 10opsrbas 17492 . . . . 5  |-  ( ph  ->  ( Base `  S
)  =  ( Base `  O ) )
9027, 89syl5eq 2477 . . . 4  |-  ( ph  ->  B  =  ( Base `  O ) )
91 soeq2 4648 . . . 4  |-  ( B  =  ( Base `  O
)  ->  ( ( lt `  O )  Or  B  <->  ( lt `  O )  Or  ( Base `  O ) ) )
9290, 91syl 16 . . 3  |-  ( ph  ->  ( ( lt `  O )  Or  B  <->  ( lt `  O )  Or  ( Base `  O
) ) )
9388, 92mpbid 210 . 2  |-  ( ph  ->  ( lt `  O
)  Or  ( Base `  O ) )
9490reseq2d 5097 . . . 4  |-  ( ph  ->  (  _I  |`  B )  =  (  _I  |`  ( Base `  O ) ) )
95 ssun2 3508 . . . 4  |-  (  _I  |`  B )  C_  (
( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  u.  (  _I  |`  B ) )
9694, 95syl6eqssr 3395 . . 3  |-  ( ph  ->  (  _I  |`  ( Base `  O ) ) 
C_  ( ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  u.  (  _I  |`  B ) ) )
9796, 48sseqtr4d 3381 . 2  |-  ( ph  ->  (  _I  |`  ( Base `  O ) ) 
C_  .<_  )
98 eqid 2433 . . . 4  |-  ( Base `  O )  =  (
Base `  O )
9998, 37, 38tosso 15189 . . 3  |-  ( O  e.  _V  ->  ( O  e. Toset  <->  ( ( lt
`  O )  Or  ( Base `  O
)  /\  (  _I  |`  ( Base `  O
) )  C_  .<_  ) ) )
10036, 99ax-mp 5 . 2  |-  ( O  e. Toset 
<->  ( ( lt `  O )  Or  ( Base `  O )  /\  (  _I  |`  ( Base `  O ) )  C_  .<_  ) )
10193, 97, 100sylanbrc 657 1  |-  ( ph  ->  O  e. Toset )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755   A.wral 2705   E.wrex 2706   {crab 2709   _Vcvv 2962    \ cdif 3313    u. cun 3314    i^i cin 3315    C_ wss 3316   (/)c0 3625   <.cop 3871   class class class wbr 4280   {copab 4337    _I cid 4618    Or wor 4627    We wwe 4665    X. cxp 4825   `'ccnv 4826    |` cres 4829   "cima 4830   Rel wrel 4832   ` cfv 5406  (class class class)co 6080    ^m cmap 7202   Fincfn 7298   NNcn 10310   NN0cn0 10567   Basecbs 14157   lecple 14228   ltcplt 15094  Tosetctos 15186   mPwSer cmps 17340    <bag cltb 17347   ordPwSer copws 17348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-seqom 6889  df-1o 6908  df-2o 6909  df-oadd 6912  df-omul 6913  df-oexp 6914  df-er 7089  df-map 7204  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-oi 7712  df-cnf 7856  df-card 8097  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-uz 10850  df-fz 11425  df-hash 12088  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-plusg 14234  df-mulr 14235  df-sca 14237  df-vsca 14238  df-tset 14240  df-ple 14241  df-poset 15099  df-plt 15111  df-toset 15187  df-psr 17351  df-ltbag 17358  df-opsr 17359
This theorem is referenced by:  opsrtos  17499
  Copyright terms: Public domain W3C validator