MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemapso Structured version   Visualization version   GIF version

Theorem wemapso 8339
Description: Construct lexicographic order on a function space based on a well-ordering of the indexes and a total ordering of the values. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Mario Carneiro, 8-Feb-2015.)
Hypothesis
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
wemapso ((𝐴𝑉𝑅 We 𝐴𝑆 Or 𝐵) → 𝑇 Or (𝐵𝑚 𝐴))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wemapso
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3185 . 2 (𝐴𝑉𝐴 ∈ V)
2 wemapso.t . . 3 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
3 ssid 3587 . . 3 (𝐵𝑚 𝐴) ⊆ (𝐵𝑚 𝐴)
4 simp1 1054 . . 3 ((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) → 𝐴 ∈ V)
5 weso 5029 . . . 4 (𝑅 We 𝐴𝑅 Or 𝐴)
653ad2ant2 1076 . . 3 ((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) → 𝑅 Or 𝐴)
7 simp3 1056 . . 3 ((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) → 𝑆 Or 𝐵)
8 simpl1 1057 . . . . 5 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → 𝐴 ∈ V)
9 difss 3699 . . . . . . 7 (𝑎𝑏) ⊆ 𝑎
10 dmss 5245 . . . . . . 7 ((𝑎𝑏) ⊆ 𝑎 → dom (𝑎𝑏) ⊆ dom 𝑎)
119, 10ax-mp 5 . . . . . 6 dom (𝑎𝑏) ⊆ dom 𝑎
12 simprll 798 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → 𝑎 ∈ (𝐵𝑚 𝐴))
13 elmapi 7765 . . . . . . . . 9 (𝑎 ∈ (𝐵𝑚 𝐴) → 𝑎:𝐴𝐵)
1412, 13syl 17 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → 𝑎:𝐴𝐵)
15 ffn 5958 . . . . . . . 8 (𝑎:𝐴𝐵𝑎 Fn 𝐴)
1614, 15syl 17 . . . . . . 7 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → 𝑎 Fn 𝐴)
17 fndm 5904 . . . . . . 7 (𝑎 Fn 𝐴 → dom 𝑎 = 𝐴)
1816, 17syl 17 . . . . . 6 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → dom 𝑎 = 𝐴)
1911, 18syl5sseq 3616 . . . . 5 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ⊆ 𝐴)
208, 19ssexd 4733 . . . 4 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ∈ V)
21 simpl2 1058 . . . . 5 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → 𝑅 We 𝐴)
22 wefr 5028 . . . . 5 (𝑅 We 𝐴𝑅 Fr 𝐴)
2321, 22syl 17 . . . 4 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → 𝑅 Fr 𝐴)
24 simprr 792 . . . . 5 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → 𝑎𝑏)
25 simprlr 799 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → 𝑏 ∈ (𝐵𝑚 𝐴))
26 elmapi 7765 . . . . . . . . 9 (𝑏 ∈ (𝐵𝑚 𝐴) → 𝑏:𝐴𝐵)
2725, 26syl 17 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → 𝑏:𝐴𝐵)
28 ffn 5958 . . . . . . . 8 (𝑏:𝐴𝐵𝑏 Fn 𝐴)
2927, 28syl 17 . . . . . . 7 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → 𝑏 Fn 𝐴)
30 fndmdifeq0 6231 . . . . . . 7 ((𝑎 Fn 𝐴𝑏 Fn 𝐴) → (dom (𝑎𝑏) = ∅ ↔ 𝑎 = 𝑏))
3116, 29, 30syl2anc 691 . . . . . 6 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → (dom (𝑎𝑏) = ∅ ↔ 𝑎 = 𝑏))
3231necon3bid 2826 . . . . 5 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → (dom (𝑎𝑏) ≠ ∅ ↔ 𝑎𝑏))
3324, 32mpbird 246 . . . 4 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ≠ ∅)
34 fri 5000 . . . 4 (((dom (𝑎𝑏) ∈ V ∧ 𝑅 Fr 𝐴) ∧ (dom (𝑎𝑏) ⊆ 𝐴 ∧ dom (𝑎𝑏) ≠ ∅)) → ∃𝑐 ∈ dom (𝑎𝑏)∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐)
3520, 23, 19, 33, 34syl22anc 1319 . . 3 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → ∃𝑐 ∈ dom (𝑎𝑏)∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐)
362, 3, 4, 6, 7, 35wemapsolem 8338 . 2 ((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) → 𝑇 Or (𝐵𝑚 𝐴))
371, 36syl3an1 1351 1 ((𝐴𝑉𝑅 We 𝐴𝑆 Or 𝐵) → 𝑇 Or (𝐵𝑚 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  cdif 3537  wss 3540  c0 3874   class class class wbr 4583  {copab 4642   Or wor 4958   Fr wfr 4994   We wwe 4996  dom cdm 5038   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746
This theorem is referenced by:  opsrtoslem2  19306  wepwso  36631
  Copyright terms: Public domain W3C validator