Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dprd0 | Structured version Visualization version GIF version |
Description: The empty family is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprd0.0 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
dprd0 | ⊢ (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4718 | . . 3 ⊢ ∅ ∈ V | |
2 | dprd0.0 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
3 | 2 | dprdz 18252 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ∅ ∈ V) → (𝐺dom DProd (𝑥 ∈ ∅ ↦ { 0 }) ∧ (𝐺 DProd (𝑥 ∈ ∅ ↦ { 0 })) = { 0 })) |
4 | 1, 3 | mpan2 703 | . 2 ⊢ (𝐺 ∈ Grp → (𝐺dom DProd (𝑥 ∈ ∅ ↦ { 0 }) ∧ (𝐺 DProd (𝑥 ∈ ∅ ↦ { 0 })) = { 0 })) |
5 | mpt0 5934 | . . . 4 ⊢ (𝑥 ∈ ∅ ↦ { 0 }) = ∅ | |
6 | 5 | breq2i 4591 | . . 3 ⊢ (𝐺dom DProd (𝑥 ∈ ∅ ↦ { 0 }) ↔ 𝐺dom DProd ∅) |
7 | 5 | oveq2i 6560 | . . . 4 ⊢ (𝐺 DProd (𝑥 ∈ ∅ ↦ { 0 })) = (𝐺 DProd ∅) |
8 | 7 | eqeq1i 2615 | . . 3 ⊢ ((𝐺 DProd (𝑥 ∈ ∅ ↦ { 0 })) = { 0 } ↔ (𝐺 DProd ∅) = { 0 }) |
9 | 6, 8 | anbi12i 729 | . 2 ⊢ ((𝐺dom DProd (𝑥 ∈ ∅ ↦ { 0 }) ∧ (𝐺 DProd (𝑥 ∈ ∅ ↦ { 0 })) = { 0 }) ↔ (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = { 0 })) |
10 | 4, 9 | sylib 207 | 1 ⊢ (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ∅c0 3874 {csn 4125 class class class wbr 4583 ↦ cmpt 4643 dom cdm 5038 ‘cfv 5804 (class class class)co 6549 0gc0g 15923 Grpcgrp 17245 DProd cdprd 18215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-supp 7183 df-tpos 7239 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-ixp 7795 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fsupp 8159 df-oi 8298 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-seq 12664 df-hash 12980 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-0g 15925 df-gsum 15926 df-mre 16069 df-mrc 16070 df-acs 16072 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-mhm 17158 df-submnd 17159 df-grp 17248 df-minusg 17249 df-sbg 17250 df-subg 17414 df-ghm 17481 df-gim 17524 df-cntz 17573 df-oppg 17599 df-cmn 18018 df-dprd 18217 |
This theorem is referenced by: ablfac1eulem 18294 ablfac1eu 18295 pgpfaclem3 18305 |
Copyright terms: Public domain | W3C validator |