MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgacs Structured version   Visualization version   GIF version

Theorem subgacs 17452
Description: Subgroups are an algebraic closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
subgacs.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
subgacs (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))

Proof of Theorem subgacs
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . . 6 (invg𝐺) = (invg𝐺)
21issubg3 17435 . . . . 5 (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑠 ((invg𝐺)‘𝑥) ∈ 𝑠)))
3 subgacs.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
43submss 17173 . . . . . . . . 9 (𝑠 ∈ (SubMnd‘𝐺) → 𝑠𝐵)
54adantl 481 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → 𝑠𝐵)
6 selpw 4115 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
75, 6sylibr 223 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → 𝑠 ∈ 𝒫 𝐵)
8 eleq2 2677 . . . . . . . . 9 (𝑦 = 𝑠 → (((invg𝐺)‘𝑥) ∈ 𝑦 ↔ ((invg𝐺)‘𝑥) ∈ 𝑠))
98raleqbi1dv 3123 . . . . . . . 8 (𝑦 = 𝑠 → (∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦 ↔ ∀𝑥𝑠 ((invg𝐺)‘𝑥) ∈ 𝑠))
109elrab3 3332 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵 → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦} ↔ ∀𝑥𝑠 ((invg𝐺)‘𝑥) ∈ 𝑠))
117, 10syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑠 ∈ (SubMnd‘𝐺)) → (𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦} ↔ ∀𝑥𝑠 ((invg𝐺)‘𝑥) ∈ 𝑠))
1211pm5.32da 671 . . . . 5 (𝐺 ∈ Grp → ((𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑠 ((invg𝐺)‘𝑥) ∈ 𝑠)))
132, 12bitr4d 270 . . . 4 (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦})))
14 elin 3758 . . . 4 (𝑠 ∈ ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}) ↔ (𝑠 ∈ (SubMnd‘𝐺) ∧ 𝑠 ∈ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}))
1513, 14syl6bbr 277 . . 3 (𝐺 ∈ Grp → (𝑠 ∈ (SubGrp‘𝐺) ↔ 𝑠 ∈ ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦})))
1615eqrdv 2608 . 2 (𝐺 ∈ Grp → (SubGrp‘𝐺) = ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}))
17 fvex 6113 . . . . 5 (Base‘𝐺) ∈ V
183, 17eqeltri 2684 . . . 4 𝐵 ∈ V
19 mreacs 16142 . . . 4 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
2018, 19mp1i 13 . . 3 (𝐺 ∈ Grp → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
21 grpmnd 17252 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
223submacs 17188 . . . 4 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
2321, 22syl 17 . . 3 (𝐺 ∈ Grp → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
243, 1grpinvcl 17290 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
2524ralrimiva 2949 . . . 4 (𝐺 ∈ Grp → ∀𝑥𝐵 ((invg𝐺)‘𝑥) ∈ 𝐵)
26 acsfn1 16145 . . . 4 ((𝐵 ∈ V ∧ ∀𝑥𝐵 ((invg𝐺)‘𝑥) ∈ 𝐵) → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵))
2718, 25, 26sylancr 694 . . 3 (𝐺 ∈ Grp → {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵))
28 mreincl 16082 . . 3 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubMnd‘𝐺) ∈ (ACS‘𝐵) ∧ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦} ∈ (ACS‘𝐵)) → ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}) ∈ (ACS‘𝐵))
2920, 23, 27, 28syl3anc 1318 . 2 (𝐺 ∈ Grp → ((SubMnd‘𝐺) ∩ {𝑦 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑦 ((invg𝐺)‘𝑥) ∈ 𝑦}) ∈ (ACS‘𝐵))
3016, 29eqeltrd 2688 1 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108  cfv 5804  Basecbs 15695  Moorecmre 16065  ACScacs 16068  Mndcmnd 17117  SubMndcsubmnd 17157  Grpcgrp 17245  invgcminusg 17246  SubGrpcsubg 17411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-subg 17414
This theorem is referenced by:  nsgacs  17453  cycsubg2  17454  cycsubg2cl  17455  odf1o1  17810  lsmmod  17911  dmdprdd  18221  dprdfeq0  18244  dprdspan  18249  dprdres  18250  dprdss  18251  dprdz  18252  subgdmdprd  18256  subgdprd  18257  dprdsn  18258  dprd2dlem1  18263  dprd2da  18264  dmdprdsplit2lem  18267  ablfac1b  18292  pgpfac1lem1  18296  pgpfac1lem2  18297  pgpfac1lem3a  18298  pgpfac1lem3  18299  pgpfac1lem4  18300  pgpfac1lem5  18301  pgpfaclem1  18303  pgpfaclem2  18304  lssacs  18788  subrgacs  36789  proot1mul  36796  proot1hash  36797
  Copyright terms: Public domain W3C validator