MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssacs Structured version   Visualization version   GIF version

Theorem lssacs 18788
Description: Submodules are an algebraic closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypotheses
Ref Expression
lssacs.b 𝐵 = (Base‘𝑊)
lssacs.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssacs (𝑊 ∈ LMod → 𝑆 ∈ (ACS‘𝐵))

Proof of Theorem lssacs
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lssacs.b . . . . . 6 𝐵 = (Base‘𝑊)
2 lssacs.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
31, 2lssss 18758 . . . . 5 (𝑎𝑆𝑎𝐵)
43a1i 11 . . . 4 (𝑊 ∈ LMod → (𝑎𝑆𝑎𝐵))
5 inss2 3796 . . . . . . . 8 ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) ⊆ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}
6 ssrab2 3650 . . . . . . . 8 {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ⊆ 𝒫 𝐵
75, 6sstri 3577 . . . . . . 7 ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) ⊆ 𝒫 𝐵
87sseli 3564 . . . . . 6 (𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) → 𝑎 ∈ 𝒫 𝐵)
98elpwid 4118 . . . . 5 (𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) → 𝑎𝐵)
109a1i 11 . . . 4 (𝑊 ∈ LMod → (𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) → 𝑎𝐵))
11 eqid 2610 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
12 eqid 2610 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
13 eqid 2610 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
1411, 12, 1, 13, 2islss4 18783 . . . . . . . 8 (𝑊 ∈ LMod → (𝑎𝑆 ↔ (𝑎 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎)))
1514adantr 480 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑎𝐵) → (𝑎𝑆 ↔ (𝑎 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎)))
16 selpw 4115 . . . . . . . . . 10 (𝑎 ∈ 𝒫 𝐵𝑎𝐵)
17 eleq2 2677 . . . . . . . . . . . . 13 (𝑏 = 𝑎 → ((𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏 ↔ (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎))
1817raleqbi1dv 3123 . . . . . . . . . . . 12 (𝑏 = 𝑎 → (∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏 ↔ ∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎))
1918ralbidv 2969 . . . . . . . . . . 11 (𝑏 = 𝑎 → (∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏 ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎))
2019elrab3 3332 . . . . . . . . . 10 (𝑎 ∈ 𝒫 𝐵 → (𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎))
2116, 20sylbir 224 . . . . . . . . 9 (𝑎𝐵 → (𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎))
2221adantl 481 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑎𝐵) → (𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ↔ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎))
2322anbi2d 736 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑎𝐵) → ((𝑎 ∈ (SubGrp‘𝑊) ∧ 𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) ↔ (𝑎 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑎 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑎)))
2415, 23bitr4d 270 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑎𝐵) → (𝑎𝑆 ↔ (𝑎 ∈ (SubGrp‘𝑊) ∧ 𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏})))
25 elin 3758 . . . . . 6 (𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) ↔ (𝑎 ∈ (SubGrp‘𝑊) ∧ 𝑎 ∈ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}))
2624, 25syl6bbr 277 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑎𝐵) → (𝑎𝑆𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏})))
2726ex 449 . . . 4 (𝑊 ∈ LMod → (𝑎𝐵 → (𝑎𝑆𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}))))
284, 10, 27pm5.21ndd 368 . . 3 (𝑊 ∈ LMod → (𝑎𝑆𝑎 ∈ ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏})))
2928eqrdv 2608 . 2 (𝑊 ∈ LMod → 𝑆 = ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}))
30 fvex 6113 . . . . 5 (Base‘𝑊) ∈ V
311, 30eqeltri 2684 . . . 4 𝐵 ∈ V
32 mreacs 16142 . . . 4 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
3331, 32mp1i 13 . . 3 (𝑊 ∈ LMod → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
34 lmodgrp 18693 . . . 4 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
351subgacs 17452 . . . 4 (𝑊 ∈ Grp → (SubGrp‘𝑊) ∈ (ACS‘𝐵))
3634, 35syl 17 . . 3 (𝑊 ∈ LMod → (SubGrp‘𝑊) ∈ (ACS‘𝐵))
371, 11, 13, 12lmodvscl 18703 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐵) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝐵)
38373expb 1258 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐵)) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝐵)
3938ralrimivva 2954 . . . 4 (𝑊 ∈ LMod → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝐵 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝐵)
40 acsfn1c 16146 . . . 4 ((𝐵 ∈ V ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝐵 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝐵) → {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ∈ (ACS‘𝐵))
4131, 39, 40sylancr 694 . . 3 (𝑊 ∈ LMod → {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ∈ (ACS‘𝐵))
42 mreincl 16082 . . 3 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ (SubGrp‘𝑊) ∈ (ACS‘𝐵) ∧ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏} ∈ (ACS‘𝐵)) → ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) ∈ (ACS‘𝐵))
4333, 36, 41, 42syl3anc 1318 . 2 (𝑊 ∈ LMod → ((SubGrp‘𝑊) ∩ {𝑏 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑏 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑏}) ∈ (ACS‘𝐵))
4429, 43eqeltrd 2688 1 (𝑊 ∈ LMod → 𝑆 ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108  cfv 5804  (class class class)co 6549  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772  Moorecmre 16065  ACScacs 16068  Grpcgrp 17245  SubGrpcsubg 17411  LModclmod 18686  LSubSpclss 18753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-lss 18754
This theorem is referenced by:  lssacsex  18965  lidlacs  19042
  Copyright terms: Public domain W3C validator