Step | Hyp | Ref
| Expression |
1 | | submacs.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
2 | | eqid 2610 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
3 | | eqid 2610 |
. . . . . 6
⊢
(+g‘𝐺) = (+g‘𝐺) |
4 | 1, 2, 3 | issubm 17170 |
. . . . 5
⊢ (𝐺 ∈ Mnd → (𝑠 ∈ (SubMnd‘𝐺) ↔ (𝑠 ⊆ 𝐵 ∧ (0g‘𝐺) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠))) |
5 | | selpw 4115 |
. . . . . . 7
⊢ (𝑠 ∈ 𝒫 𝐵 ↔ 𝑠 ⊆ 𝐵) |
6 | 5 | anbi1i 727 |
. . . . . 6
⊢ ((𝑠 ∈ 𝒫 𝐵 ∧
((0g‘𝐺)
∈ 𝑠 ∧
∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠)) ↔ (𝑠 ⊆ 𝐵 ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠))) |
7 | | 3anass 1035 |
. . . . . 6
⊢ ((𝑠 ⊆ 𝐵 ∧ (0g‘𝐺) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠) ↔ (𝑠 ⊆ 𝐵 ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠))) |
8 | 6, 7 | bitr4i 266 |
. . . . 5
⊢ ((𝑠 ∈ 𝒫 𝐵 ∧
((0g‘𝐺)
∈ 𝑠 ∧
∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠)) ↔ (𝑠 ⊆ 𝐵 ∧ (0g‘𝐺) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠)) |
9 | 4, 8 | syl6bbr 277 |
. . . 4
⊢ (𝐺 ∈ Mnd → (𝑠 ∈ (SubMnd‘𝐺) ↔ (𝑠 ∈ 𝒫 𝐵 ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠)))) |
10 | 9 | abbi2dv 2729 |
. . 3
⊢ (𝐺 ∈ Mnd →
(SubMnd‘𝐺) = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠))}) |
11 | | df-rab 2905 |
. . 3
⊢ {𝑠 ∈ 𝒫 𝐵 ∣
((0g‘𝐺)
∈ 𝑠 ∧
∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠)} = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠))} |
12 | 10, 11 | syl6eqr 2662 |
. 2
⊢ (𝐺 ∈ Mnd →
(SubMnd‘𝐺) = {𝑠 ∈ 𝒫 𝐵 ∣
((0g‘𝐺)
∈ 𝑠 ∧
∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠)}) |
13 | | inrab 3858 |
. . 3
⊢ ({𝑠 ∈ 𝒫 𝐵 ∣
(0g‘𝐺)
∈ 𝑠} ∩ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠}) = {𝑠 ∈ 𝒫 𝐵 ∣ ((0g‘𝐺) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠)} |
14 | | fvex 6113 |
. . . . . 6
⊢
(Base‘𝐺)
∈ V |
15 | 1, 14 | eqeltri 2684 |
. . . . 5
⊢ 𝐵 ∈ V |
16 | | mreacs 16142 |
. . . . 5
⊢ (𝐵 ∈ V →
(ACS‘𝐵) ∈
(Moore‘𝒫 𝐵)) |
17 | 15, 16 | mp1i 13 |
. . . 4
⊢ (𝐺 ∈ Mnd →
(ACS‘𝐵) ∈
(Moore‘𝒫 𝐵)) |
18 | 1, 2 | mndidcl 17131 |
. . . . 5
⊢ (𝐺 ∈ Mnd →
(0g‘𝐺)
∈ 𝐵) |
19 | | acsfn0 16144 |
. . . . 5
⊢ ((𝐵 ∈ V ∧
(0g‘𝐺)
∈ 𝐵) → {𝑠 ∈ 𝒫 𝐵 ∣
(0g‘𝐺)
∈ 𝑠} ∈
(ACS‘𝐵)) |
20 | 15, 18, 19 | sylancr 694 |
. . . 4
⊢ (𝐺 ∈ Mnd → {𝑠 ∈ 𝒫 𝐵 ∣
(0g‘𝐺)
∈ 𝑠} ∈
(ACS‘𝐵)) |
21 | 1, 3 | mndcl 17124 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
22 | 21 | 3expb 1258 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
23 | 22 | ralrimivva 2954 |
. . . . 5
⊢ (𝐺 ∈ Mnd → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
24 | | acsfn2 16147 |
. . . . 5
⊢ ((𝐵 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵)) |
25 | 15, 23, 24 | sylancr 694 |
. . . 4
⊢ (𝐺 ∈ Mnd → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵)) |
26 | | mreincl 16082 |
. . . 4
⊢
(((ACS‘𝐵)
∈ (Moore‘𝒫 𝐵) ∧ {𝑠 ∈ 𝒫 𝐵 ∣ (0g‘𝐺) ∈ 𝑠} ∈ (ACS‘𝐵) ∧ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵)) → ({𝑠 ∈ 𝒫 𝐵 ∣ (0g‘𝐺) ∈ 𝑠} ∩ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠}) ∈ (ACS‘𝐵)) |
27 | 17, 20, 25, 26 | syl3anc 1318 |
. . 3
⊢ (𝐺 ∈ Mnd → ({𝑠 ∈ 𝒫 𝐵 ∣
(0g‘𝐺)
∈ 𝑠} ∩ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠}) ∈ (ACS‘𝐵)) |
28 | 13, 27 | syl5eqelr 2693 |
. 2
⊢ (𝐺 ∈ Mnd → {𝑠 ∈ 𝒫 𝐵 ∣
((0g‘𝐺)
∈ 𝑠 ∧
∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝐺)𝑦) ∈ 𝑠)} ∈ (ACS‘𝐵)) |
29 | 12, 28 | eqeltrd 2688 |
1
⊢ (𝐺 ∈ Mnd →
(SubMnd‘𝐺) ∈
(ACS‘𝐵)) |