Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  submacs Structured version   Visualization version   GIF version

Theorem submacs 17188
 Description: Submonoids are an algebraic closure system. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypothesis
Ref Expression
submacs.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
submacs (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))

Proof of Theorem submacs
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submacs.b . . . . . 6 𝐵 = (Base‘𝐺)
2 eqid 2610 . . . . . 6 (0g𝐺) = (0g𝐺)
3 eqid 2610 . . . . . 6 (+g𝐺) = (+g𝐺)
41, 2, 3issubm 17170 . . . . 5 (𝐺 ∈ Mnd → (𝑠 ∈ (SubMnd‘𝐺) ↔ (𝑠𝐵 ∧ (0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)))
5 selpw 4115 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
65anbi1i 727 . . . . . 6 ((𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)) ↔ (𝑠𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)))
7 3anass 1035 . . . . . 6 ((𝑠𝐵 ∧ (0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠) ↔ (𝑠𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)))
86, 7bitr4i 266 . . . . 5 ((𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)) ↔ (𝑠𝐵 ∧ (0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))
94, 8syl6bbr 277 . . . 4 (𝐺 ∈ Mnd → (𝑠 ∈ (SubMnd‘𝐺) ↔ (𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))))
109abbi2dv 2729 . . 3 (𝐺 ∈ Mnd → (SubMnd‘𝐺) = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))})
11 df-rab 2905 . . 3 {𝑠 ∈ 𝒫 𝐵 ∣ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)} = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))}
1210, 11syl6eqr 2662 . 2 (𝐺 ∈ Mnd → (SubMnd‘𝐺) = {𝑠 ∈ 𝒫 𝐵 ∣ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)})
13 inrab 3858 . . 3 ({𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∩ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠}) = {𝑠 ∈ 𝒫 𝐵 ∣ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)}
14 fvex 6113 . . . . . 6 (Base‘𝐺) ∈ V
151, 14eqeltri 2684 . . . . 5 𝐵 ∈ V
16 mreacs 16142 . . . . 5 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
1715, 16mp1i 13 . . . 4 (𝐺 ∈ Mnd → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
181, 2mndidcl 17131 . . . . 5 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
19 acsfn0 16144 . . . . 5 ((𝐵 ∈ V ∧ (0g𝐺) ∈ 𝐵) → {𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∈ (ACS‘𝐵))
2015, 18, 19sylancr 694 . . . 4 (𝐺 ∈ Mnd → {𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∈ (ACS‘𝐵))
211, 3mndcl 17124 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
22213expb 1258 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
2322ralrimivva 2954 . . . . 5 (𝐺 ∈ Mnd → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ 𝐵)
24 acsfn2 16147 . . . . 5 ((𝐵 ∈ V ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ 𝐵) → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵))
2515, 23, 24sylancr 694 . . . 4 (𝐺 ∈ Mnd → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵))
26 mreincl 16082 . . . 4 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ {𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∈ (ACS‘𝐵) ∧ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵)) → ({𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∩ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠}) ∈ (ACS‘𝐵))
2717, 20, 25, 26syl3anc 1318 . . 3 (𝐺 ∈ Mnd → ({𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∩ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠}) ∈ (ACS‘𝐵))
2813, 27syl5eqelr 2693 . 2 (𝐺 ∈ Mnd → {𝑠 ∈ 𝒫 𝐵 ∣ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)} ∈ (ACS‘𝐵))
2912, 28eqeltrd 2688 1 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {cab 2596  ∀wral 2896  {crab 2900  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540  𝒫 cpw 4108  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Moorecmre 16065  ACScacs 16068  Mndcmnd 17117  SubMndcsubmnd 17157 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-fin 7845  df-0g 15925  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159 This theorem is referenced by:  mrcmndind  17189  gsumwspan  17206  subgacs  17452  symggen  17713  cntzspan  18070  gsumzsplit  18150  gsumzoppg  18167  gsumpt  18184  subrgacs  36789
 Copyright terms: Public domain W3C validator