MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdmdprd Structured version   Visualization version   GIF version

Theorem subgdmdprd 18256
Description: A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypothesis
Ref Expression
subgdprd.1 𝐻 = (𝐺s 𝐴)
Assertion
Ref Expression
subgdmdprd (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴)))

Proof of Theorem subgdmdprd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldmdprd 18219 . . . 4 Rel dom DProd
21brrelex2i 5083 . . 3 (𝐻dom DProd 𝑆𝑆 ∈ V)
32a1i 11 . 2 (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆𝑆 ∈ V))
41brrelex2i 5083 . . . 4 (𝐺dom DProd 𝑆𝑆 ∈ V)
54adantr 480 . . 3 ((𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴) → 𝑆 ∈ V)
65a1i 11 . 2 (𝐴 ∈ (SubGrp‘𝐺) → ((𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴) → 𝑆 ∈ V))
7 ffvelrn 6265 . . . . . . . . . . . . . . . 16 ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ 𝑥 ∈ dom 𝑆) → (𝑆𝑥) ∈ (SubGrp‘𝐻))
87ad2ant2lr 780 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑥) ∈ (SubGrp‘𝐻))
9 eqid 2610 . . . . . . . . . . . . . . . 16 (Base‘𝐻) = (Base‘𝐻)
109subgss 17418 . . . . . . . . . . . . . . 15 ((𝑆𝑥) ∈ (SubGrp‘𝐻) → (𝑆𝑥) ⊆ (Base‘𝐻))
118, 10syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑥) ⊆ (Base‘𝐻))
12 subgdprd.1 . . . . . . . . . . . . . . . 16 𝐻 = (𝐺s 𝐴)
1312subgbas 17421 . . . . . . . . . . . . . . 15 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 = (Base‘𝐻))
1413ad2antrr 758 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → 𝐴 = (Base‘𝐻))
1511, 14sseqtr4d 3605 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑥) ⊆ 𝐴)
1615biantrud 527 . . . . . . . . . . . 12 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ↔ ((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ (𝑆𝑥) ⊆ 𝐴)))
17 simpll 786 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → 𝐴 ∈ (SubGrp‘𝐺))
18 simplr 788 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → 𝑆:dom 𝑆⟶(SubGrp‘𝐻))
19 eldifi 3694 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (dom 𝑆 ∖ {𝑥}) → 𝑦 ∈ dom 𝑆)
2019ad2antll 761 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → 𝑦 ∈ dom 𝑆)
2118, 20ffvelrnd 6268 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑦) ∈ (SubGrp‘𝐻))
229subgss 17418 . . . . . . . . . . . . . . . . 17 ((𝑆𝑦) ∈ (SubGrp‘𝐻) → (𝑆𝑦) ⊆ (Base‘𝐻))
2321, 22syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑦) ⊆ (Base‘𝐻))
2423, 14sseqtr4d 3605 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑦) ⊆ 𝐴)
25 eqid 2610 . . . . . . . . . . . . . . . 16 (Cntz‘𝐺) = (Cntz‘𝐺)
26 eqid 2610 . . . . . . . . . . . . . . . 16 (Cntz‘𝐻) = (Cntz‘𝐻)
2712, 25, 26resscntz 17587 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (SubGrp‘𝐺) ∧ (𝑆𝑦) ⊆ 𝐴) → ((Cntz‘𝐻)‘(𝑆𝑦)) = (((Cntz‘𝐺)‘(𝑆𝑦)) ∩ 𝐴))
2817, 24, 27syl2anc 691 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((Cntz‘𝐻)‘(𝑆𝑦)) = (((Cntz‘𝐺)‘(𝑆𝑦)) ∩ 𝐴))
2928sseq2d 3596 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ↔ (𝑆𝑥) ⊆ (((Cntz‘𝐺)‘(𝑆𝑦)) ∩ 𝐴)))
30 ssin 3797 . . . . . . . . . . . . 13 (((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ (𝑆𝑥) ⊆ 𝐴) ↔ (𝑆𝑥) ⊆ (((Cntz‘𝐺)‘(𝑆𝑦)) ∩ 𝐴))
3129, 30syl6bbr 277 . . . . . . . . . . . 12 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ↔ ((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ (𝑆𝑥) ⊆ 𝐴)))
3216, 31bitr4d 270 . . . . . . . . . . 11 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ↔ (𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦))))
3332anassrs 678 . . . . . . . . . 10 ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) ∧ 𝑦 ∈ (dom 𝑆 ∖ {𝑥})) → ((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ↔ (𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦))))
3433ralbidva 2968 . . . . . . . . 9 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ↔ ∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦))))
35 subgrcl 17422 . . . . . . . . . . . . . . 15 (𝐴 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
3635ad2antrr 758 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐺 ∈ Grp)
37 eqid 2610 . . . . . . . . . . . . . . 15 (Base‘𝐺) = (Base‘𝐺)
3837subgacs 17452 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
39 acsmre 16136 . . . . . . . . . . . . . 14 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
4036, 38, 393syl 18 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
4112subggrp 17420 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
4241ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐻 ∈ Grp)
439subgacs 17452 . . . . . . . . . . . . . . 15 (𝐻 ∈ Grp → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
44 acsmre 16136 . . . . . . . . . . . . . . 15 ((SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
4542, 43, 443syl 18 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
46 eqid 2610 . . . . . . . . . . . . . 14 (mrCls‘(SubGrp‘𝐻)) = (mrCls‘(SubGrp‘𝐻))
47 imassrn 5396 . . . . . . . . . . . . . . . . 17 (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ran 𝑆
48 frn 5966 . . . . . . . . . . . . . . . . . 18 (𝑆:dom 𝑆⟶(SubGrp‘𝐻) → ran 𝑆 ⊆ (SubGrp‘𝐻))
4948ad2antlr 759 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ran 𝑆 ⊆ (SubGrp‘𝐻))
5047, 49syl5ss 3579 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (SubGrp‘𝐻))
51 mresspw 16075 . . . . . . . . . . . . . . . . 17 ((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) → (SubGrp‘𝐻) ⊆ 𝒫 (Base‘𝐻))
5245, 51syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (SubGrp‘𝐻) ⊆ 𝒫 (Base‘𝐻))
5350, 52sstrd 3578 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐻))
54 sspwuni 4547 . . . . . . . . . . . . . . 15 ((𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐻) ↔ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐻))
5553, 54sylib 207 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐻))
5645, 46, 55mrcssidd 16108 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
5746mrccl 16094 . . . . . . . . . . . . . . . 16 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐻)) → ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻))
5845, 55, 57syl2anc 691 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻))
5912subsubg 17440 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (SubGrp‘𝐺) → (((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)))
6059ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)))
6158, 60mpbid 221 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴))
6261simpld 474 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
63 eqid 2610 . . . . . . . . . . . . . 14 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
6463mrcsscl 16103 . . . . . . . . . . . . 13 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∧ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
6540, 56, 62, 64syl3anc 1318 . . . . . . . . . . . 12 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
6613ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐴 = (Base‘𝐻))
6755, 66sseqtr4d 3605 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ 𝐴)
6837subgss 17418 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺))
6968ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐴 ⊆ (Base‘𝐺))
7067, 69sstrd 3578 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐺))
7140, 63, 70mrcssidd 16108 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
7263mrccl 16094 . . . . . . . . . . . . . . 15 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
7340, 70, 72syl2anc 691 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
74 simpll 786 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐴 ∈ (SubGrp‘𝐺))
7563mrcsscl 16103 . . . . . . . . . . . . . . 15 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ 𝐴𝐴 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)
7640, 67, 74, 75syl3anc 1318 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)
7712subsubg 17440 . . . . . . . . . . . . . . 15 (𝐴 ∈ (SubGrp‘𝐺) → (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)))
7877ad2antrr 758 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)))
7973, 76, 78mpbir2and 959 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻))
8046mrcsscl 16103 . . . . . . . . . . . . 13 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻)) → ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
8145, 71, 79, 80syl3anc 1318 . . . . . . . . . . . 12 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
8265, 81eqssd 3585 . . . . . . . . . . 11 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) = ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
8382ineq2d 3776 . . . . . . . . . 10 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))))
84 eqid 2610 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
8512, 84subg0 17423 . . . . . . . . . . . 12 (𝐴 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
8685ad2antrr 758 . . . . . . . . . . 11 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (0g𝐺) = (0g𝐻))
8786sneqd 4137 . . . . . . . . . 10 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → {(0g𝐺)} = {(0g𝐻)})
8883, 87eqeq12d 2625 . . . . . . . . 9 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)} ↔ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))
8934, 88anbi12d 743 . . . . . . . 8 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}) ↔ (∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})))
9089ralbidva 2968 . . . . . . 7 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) → (∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}) ↔ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})))
9190pm5.32da 671 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐺) → ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})) ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))))
9212subsubg 17440 . . . . . . . . . . . . 13 (𝐴 ∈ (SubGrp‘𝐺) → (𝑥 ∈ (SubGrp‘𝐻) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥𝐴)))
93 elin 3758 . . . . . . . . . . . . . 14 (𝑥 ∈ ((SubGrp‘𝐺) ∩ 𝒫 𝐴) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝒫 𝐴))
94 selpw 4115 . . . . . . . . . . . . . . 15 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
9594anbi2i 726 . . . . . . . . . . . . . 14 ((𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝒫 𝐴) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥𝐴))
9693, 95bitri 263 . . . . . . . . . . . . 13 (𝑥 ∈ ((SubGrp‘𝐺) ∩ 𝒫 𝐴) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥𝐴))
9792, 96syl6bbr 277 . . . . . . . . . . . 12 (𝐴 ∈ (SubGrp‘𝐺) → (𝑥 ∈ (SubGrp‘𝐻) ↔ 𝑥 ∈ ((SubGrp‘𝐺) ∩ 𝒫 𝐴)))
9897eqrdv 2608 . . . . . . . . . . 11 (𝐴 ∈ (SubGrp‘𝐺) → (SubGrp‘𝐻) = ((SubGrp‘𝐺) ∩ 𝒫 𝐴))
9998sseq2d 3596 . . . . . . . . . 10 (𝐴 ∈ (SubGrp‘𝐺) → (ran 𝑆 ⊆ (SubGrp‘𝐻) ↔ ran 𝑆 ⊆ ((SubGrp‘𝐺) ∩ 𝒫 𝐴)))
100 ssin 3797 . . . . . . . . . 10 ((ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ran 𝑆 ⊆ ((SubGrp‘𝐺) ∩ 𝒫 𝐴))
10199, 100syl6bbr 277 . . . . . . . . 9 (𝐴 ∈ (SubGrp‘𝐺) → (ran 𝑆 ⊆ (SubGrp‘𝐻) ↔ (ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
102101anbi2d 736 . . . . . . . 8 (𝐴 ∈ (SubGrp‘𝐺) → ((𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐻)) ↔ (𝑆 Fn dom 𝑆 ∧ (ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴))))
103 df-f 5808 . . . . . . . 8 (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ↔ (𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐻)))
104 df-f 5808 . . . . . . . . . 10 (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ↔ (𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐺)))
105104anbi1i 727 . . . . . . . . 9 ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ((𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐺)) ∧ ran 𝑆 ⊆ 𝒫 𝐴))
106 anass 679 . . . . . . . . 9 (((𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐺)) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ (𝑆 Fn dom 𝑆 ∧ (ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
107105, 106bitri 263 . . . . . . . 8 ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ (𝑆 Fn dom 𝑆 ∧ (ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
108102, 103, 1073bitr4g 302 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝐺) → (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
109108anbi1d 737 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐺) → ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
11091, 109bitr3d 269 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
111110adantr 480 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
112 dmexg 6989 . . . . . 6 (𝑆 ∈ V → dom 𝑆 ∈ V)
113112adantl 481 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → dom 𝑆 ∈ V)
114 eqidd 2611 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → dom 𝑆 = dom 𝑆)
11541adantr 480 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → 𝐻 ∈ Grp)
116 eqid 2610 . . . . . . . 8 (0g𝐻) = (0g𝐻)
11726, 116, 46dmdprd 18220 . . . . . . 7 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐻dom DProd 𝑆 ↔ (𝐻 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))))
118 3anass 1035 . . . . . . 7 ((𝐻 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})) ↔ (𝐻 ∈ Grp ∧ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))))
119117, 118syl6bb 275 . . . . . 6 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐻dom DProd 𝑆 ↔ (𝐻 ∈ Grp ∧ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})))))
120119baibd 946 . . . . 5 (((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) ∧ 𝐻 ∈ Grp) → (𝐻dom DProd 𝑆 ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))))
121113, 114, 115, 120syl21anc 1317 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → (𝐻dom DProd 𝑆 ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))))
12235adantr 480 . . . . . . 7 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → 𝐺 ∈ Grp)
12325, 84, 63dmdprd 18220 . . . . . . . . 9 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
124 3anass 1035 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})) ↔ (𝐺 ∈ Grp ∧ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
125123, 124syl6bb 275 . . . . . . . 8 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})))))
126125baibd 946 . . . . . . 7 (((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) ∧ 𝐺 ∈ Grp) → (𝐺dom DProd 𝑆 ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
127113, 114, 122, 126syl21anc 1317 . . . . . 6 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → (𝐺dom DProd 𝑆 ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
128127anbi1d 737 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → ((𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
129 an32 835 . . . . 5 (((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})))
130128, 129syl6bb 275 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → ((𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
131111, 121, 1303bitr4d 299 . . 3 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
132131ex 449 . 2 (𝐴 ∈ (SubGrp‘𝐺) → (𝑆 ∈ V → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴))))
1333, 6, 132pm5.21ndd 368 1 (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cdif 3537  cin 3539  wss 3540  𝒫 cpw 4108  {csn 4125   cuni 4372   class class class wbr 4583  dom cdm 5038  ran crn 5039  cima 5041   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  Basecbs 15695  s cress 15696  0gc0g 15923  Moorecmre 16065  mrClscmrc 16066  ACScacs 16068  Grpcgrp 17245  SubGrpcsubg 17411  Cntzccntz 17571   DProd cdprd 18215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-subg 17414  df-cntz 17573  df-dprd 18217
This theorem is referenced by:  subgdprd  18257  ablfaclem3  18309
  Copyright terms: Public domain W3C validator