MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdmdprd Structured version   Visualization version   Unicode version

Theorem subgdmdprd 17679
Description: A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypothesis
Ref Expression
subgdprd.1  |-  H  =  ( Gs  A )
Assertion
Ref Expression
subgdmdprd  |-  ( A  e.  (SubGrp `  G
)  ->  ( H dom DProd  S  <->  ( G dom DProd  S  /\  ran  S  C_  ~P A ) ) )

Proof of Theorem subgdmdprd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldmdprd 17641 . . . 4  |-  Rel  dom DProd
21brrelex2i 4879 . . 3  |-  ( H dom DProd  S  ->  S  e. 
_V )
32a1i 11 . 2  |-  ( A  e.  (SubGrp `  G
)  ->  ( H dom DProd  S  ->  S  e.  _V ) )
41brrelex2i 4879 . . . 4  |-  ( G dom DProd  S  ->  S  e. 
_V )
54adantr 467 . . 3  |-  ( ( G dom DProd  S  /\  ran  S  C_  ~P A
)  ->  S  e.  _V )
65a1i 11 . 2  |-  ( A  e.  (SubGrp `  G
)  ->  ( ( G dom DProd  S  /\  ran  S  C_ 
~P A )  ->  S  e.  _V )
)
7 ffvelrn 6025 . . . . . . . . . . . . . . . 16  |-  ( ( S : dom  S --> (SubGrp `  H )  /\  x  e.  dom  S )  ->  ( S `  x )  e.  (SubGrp `  H ) )
87ad2ant2lr 755 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  x )  e.  (SubGrp `  H ) )
9 eqid 2453 . . . . . . . . . . . . . . . 16  |-  ( Base `  H )  =  (
Base `  H )
109subgss 16830 . . . . . . . . . . . . . . 15  |-  ( ( S `  x )  e.  (SubGrp `  H
)  ->  ( S `  x )  C_  ( Base `  H ) )
118, 10syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  x )  C_  ( Base `  H ) )
12 subgdprd.1 . . . . . . . . . . . . . . . 16  |-  H  =  ( Gs  A )
1312subgbas 16833 . . . . . . . . . . . . . . 15  |-  ( A  e.  (SubGrp `  G
)  ->  A  =  ( Base `  H )
)
1413ad2antrr 733 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  A  =  ( Base `  H )
)
1511, 14sseqtr4d 3471 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  x )  C_  A
)
1615biantrud 510 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( ( S `  x )  C_  ( (Cntz `  G
) `  ( S `  y ) )  <->  ( ( S `  x )  C_  ( (Cntz `  G
) `  ( S `  y ) )  /\  ( S `  x ) 
C_  A ) ) )
17 simpll 761 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  A  e.  (SubGrp `  G ) )
18 simplr 763 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  S : dom  S --> (SubGrp `  H )
)
19 eldifi 3557 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( dom  S  \  { x } )  ->  y  e.  dom  S )
2019ad2antll 736 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  y  e.  dom  S )
2118, 20ffvelrnd 6028 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  y )  e.  (SubGrp `  H ) )
229subgss 16830 . . . . . . . . . . . . . . . . 17  |-  ( ( S `  y )  e.  (SubGrp `  H
)  ->  ( S `  y )  C_  ( Base `  H ) )
2321, 22syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  y )  C_  ( Base `  H ) )
2423, 14sseqtr4d 3471 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  y )  C_  A
)
25 eqid 2453 . . . . . . . . . . . . . . . 16  |-  (Cntz `  G )  =  (Cntz `  G )
26 eqid 2453 . . . . . . . . . . . . . . . 16  |-  (Cntz `  H )  =  (Cntz `  H )
2712, 25, 26resscntz 16997 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  (SubGrp `  G )  /\  ( S `  y )  C_  A )  ->  (
(Cntz `  H ) `  ( S `  y
) )  =  ( ( (Cntz `  G
) `  ( S `  y ) )  i^i 
A ) )
2817, 24, 27syl2anc 667 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( (Cntz `  H ) `  ( S `  y )
)  =  ( ( (Cntz `  G ) `  ( S `  y
) )  i^i  A
) )
2928sseq2d 3462 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( ( S `  x )  C_  ( (Cntz `  H
) `  ( S `  y ) )  <->  ( S `  x )  C_  (
( (Cntz `  G
) `  ( S `  y ) )  i^i 
A ) ) )
30 ssin 3656 . . . . . . . . . . . . 13  |-  ( ( ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( S `  x )  C_  A
)  <->  ( S `  x )  C_  (
( (Cntz `  G
) `  ( S `  y ) )  i^i 
A ) )
3129, 30syl6bbr 267 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( ( S `  x )  C_  ( (Cntz `  H
) `  ( S `  y ) )  <->  ( ( S `  x )  C_  ( (Cntz `  G
) `  ( S `  y ) )  /\  ( S `  x ) 
C_  A ) ) )
3216, 31bitr4d 260 . . . . . . . . . . 11  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( ( S `  x )  C_  ( (Cntz `  G
) `  ( S `  y ) )  <->  ( S `  x )  C_  (
(Cntz `  H ) `  ( S `  y
) ) ) )
3332anassrs 654 . . . . . . . . . 10  |-  ( ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  /\  y  e.  ( dom  S  \  { x } ) )  ->  ( ( S `  x )  C_  ( (Cntz `  G
) `  ( S `  y ) )  <->  ( S `  x )  C_  (
(Cntz `  H ) `  ( S `  y
) ) ) )
3433ralbidva 2826 . . . . . . . . 9  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  <->  A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
) ) )
35 subgrcl 16834 . . . . . . . . . . . . . . 15  |-  ( A  e.  (SubGrp `  G
)  ->  G  e.  Grp )
3635ad2antrr 733 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  G  e.  Grp )
37 eqid 2453 . . . . . . . . . . . . . . 15  |-  ( Base `  G )  =  (
Base `  G )
3837subgacs 16864 . . . . . . . . . . . . . 14  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
39 acsmre 15570 . . . . . . . . . . . . . 14  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
4036, 38, 393syl 18 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G ) ) )
4112subggrp 16832 . . . . . . . . . . . . . . . 16  |-  ( A  e.  (SubGrp `  G
)  ->  H  e.  Grp )
4241ad2antrr 733 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  H  e.  Grp )
439subgacs 16864 . . . . . . . . . . . . . . 15  |-  ( H  e.  Grp  ->  (SubGrp `  H )  e.  (ACS
`  ( Base `  H
) ) )
44 acsmre 15570 . . . . . . . . . . . . . . 15  |-  ( (SubGrp `  H )  e.  (ACS
`  ( Base `  H
) )  ->  (SubGrp `  H )  e.  (Moore `  ( Base `  H
) ) )
4542, 43, 443syl 18 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  (SubGrp `  H )  e.  (Moore `  ( Base `  H ) ) )
46 eqid 2453 . . . . . . . . . . . . . 14  |-  (mrCls `  (SubGrp `  H ) )  =  (mrCls `  (SubGrp `  H ) )
47 imassrn 5182 . . . . . . . . . . . . . . . . 17  |-  ( S
" ( dom  S  \  { x } ) )  C_  ran  S
48 frn 5740 . . . . . . . . . . . . . . . . . 18  |-  ( S : dom  S --> (SubGrp `  H )  ->  ran  S 
C_  (SubGrp `  H )
)
4948ad2antlr 734 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ran  S  C_  (SubGrp `  H ) )
5047, 49syl5ss 3445 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( S "
( dom  S  \  {
x } ) ) 
C_  (SubGrp `  H )
)
51 mresspw 15510 . . . . . . . . . . . . . . . . 17  |-  ( (SubGrp `  H )  e.  (Moore `  ( Base `  H
) )  ->  (SubGrp `  H )  C_  ~P ( Base `  H )
)
5245, 51syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  (SubGrp `  H )  C_ 
~P ( Base `  H
) )
5350, 52sstrd 3444 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( S "
( dom  S  \  {
x } ) ) 
C_  ~P ( Base `  H
) )
54 sspwuni 4370 . . . . . . . . . . . . . . 15  |-  ( ( S " ( dom 
S  \  { x } ) )  C_  ~P ( Base `  H
)  <->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  ( Base `  H
) )
5553, 54sylib 200 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  ( Base `  H
) )
5645, 46, 55mrcssidd 15543 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) )
5746mrccl 15529 . . . . . . . . . . . . . . . 16  |-  ( ( (SubGrp `  H )  e.  (Moore `  ( Base `  H ) )  /\  U. ( S " ( dom  S  \  { x } ) )  C_  ( Base `  H )
)  ->  ( (mrCls `  (SubGrp `  H )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H ) )
5845, 55, 57syl2anc 667 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H ) )
5912subsubg 16852 . . . . . . . . . . . . . . . 16  |-  ( A  e.  (SubGrp `  G
)  ->  ( (
(mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  e.  (SubGrp `  H
)  <->  ( ( (mrCls `  (SubGrp `  H )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G )  /\  (
(mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) 
C_  A ) ) )
6059ad2antrr 733 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( (mrCls `  (SubGrp `  H )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H )  <->  ( (
(mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  e.  (SubGrp `  G
)  /\  ( (mrCls `  (SubGrp `  H )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  C_  A
) ) )
6158, 60mpbid 214 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( (mrCls `  (SubGrp `  H )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G )  /\  (
(mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) 
C_  A ) )
6261simpld 461 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G ) )
63 eqid 2453 . . . . . . . . . . . . . 14  |-  (mrCls `  (SubGrp `  G ) )  =  (mrCls `  (SubGrp `  G ) )
6463mrcsscl 15538 . . . . . . . . . . . . 13  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( dom  S  \  { x } ) )  C_  ( (mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  /\  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G ) )  -> 
( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) 
C_  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) )
6540, 56, 62, 64syl3anc 1269 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  C_  (
(mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) )
6613ad2antrr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  A  =  (
Base `  H )
)
6755, 66sseqtr4d 3471 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  A )
6837subgss 16830 . . . . . . . . . . . . . . . 16  |-  ( A  e.  (SubGrp `  G
)  ->  A  C_  ( Base `  G ) )
6968ad2antrr 733 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  A  C_  ( Base `  G ) )
7067, 69sstrd 3444 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  ( Base `  G
) )
7140, 63, 70mrcssidd 15543 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) )
7263mrccl 15529 . . . . . . . . . . . . . . 15  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( dom  S  \  { x } ) )  C_  ( Base `  G )
)  ->  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G ) )
7340, 70, 72syl2anc 667 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G ) )
74 simpll 761 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  A  e.  (SubGrp `  G ) )
7563mrcsscl 15538 . . . . . . . . . . . . . . 15  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( dom  S  \  { x } ) )  C_  A  /\  A  e.  (SubGrp `  G ) )  -> 
( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) 
C_  A )
7640, 67, 74, 75syl3anc 1269 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  C_  A
)
7712subsubg 16852 . . . . . . . . . . . . . . 15  |-  ( A  e.  (SubGrp `  G
)  ->  ( (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  e.  (SubGrp `  H
)  <->  ( ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G )  /\  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) 
C_  A ) ) )
7877ad2antrr 733 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H )  <->  ( (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  e.  (SubGrp `  G
)  /\  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  C_  A
) ) )
7973, 76, 78mpbir2and 934 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H ) )
8046mrcsscl 15538 . . . . . . . . . . . . 13  |-  ( ( (SubGrp `  H )  e.  (Moore `  ( Base `  H ) )  /\  U. ( S " ( dom  S  \  { x } ) )  C_  ( (mrCls `  (SubGrp `  G
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  /\  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H ) )  -> 
( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) 
C_  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) )
8145, 71, 79, 80syl3anc 1269 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  C_  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) )
8265, 81eqssd 3451 . . . . . . . . . . 11  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  =  ( (mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) )
8382ineq2d 3636 . . . . . . . . . 10  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( S `
 x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) ) )
84 eqid 2453 . . . . . . . . . . . . 13  |-  ( 0g
`  G )  =  ( 0g `  G
)
8512, 84subg0 16835 . . . . . . . . . . . 12  |-  ( A  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
8685ad2antrr 733 . . . . . . . . . . 11  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( 0g `  G )  =  ( 0g `  H ) )
8786sneqd 3982 . . . . . . . . . 10  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  { ( 0g
`  G ) }  =  { ( 0g
`  H ) } )
8883, 87eqeq12d 2468 . . . . . . . . 9  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) }  <->  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) )
8934, 88anbi12d 718 . . . . . . . 8  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( A. y  e.  ( dom  S 
\  { x }
) ( S `  x )  C_  (
(Cntz `  G ) `  ( S `  y
) )  /\  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } )  <-> 
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) )
9089ralbidva 2826 . . . . . . 7  |-  ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  -> 
( A. x  e. 
dom  S ( A. y  e.  ( dom  S 
\  { x }
) ( S `  x )  C_  (
(Cntz `  G ) `  ( S `  y
) )  /\  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } )  <->  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) )
9190pm5.32da 647 . . . . . 6  |-  ( A  e.  (SubGrp `  G
)  ->  ( ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )  <->  ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) )
9212subsubg 16852 . . . . . . . . . . . . 13  |-  ( A  e.  (SubGrp `  G
)  ->  ( x  e.  (SubGrp `  H )  <->  ( x  e.  (SubGrp `  G )  /\  x  C_  A ) ) )
93 elin 3619 . . . . . . . . . . . . . 14  |-  ( x  e.  ( (SubGrp `  G )  i^i  ~P A )  <->  ( x  e.  (SubGrp `  G )  /\  x  e.  ~P A ) )
94 selpw 3960 . . . . . . . . . . . . . . 15  |-  ( x  e.  ~P A  <->  x  C_  A
)
9594anbi2i 701 . . . . . . . . . . . . . 14  |-  ( ( x  e.  (SubGrp `  G )  /\  x  e.  ~P A )  <->  ( x  e.  (SubGrp `  G )  /\  x  C_  A ) )
9693, 95bitri 253 . . . . . . . . . . . . 13  |-  ( x  e.  ( (SubGrp `  G )  i^i  ~P A )  <->  ( x  e.  (SubGrp `  G )  /\  x  C_  A ) )
9792, 96syl6bbr 267 . . . . . . . . . . . 12  |-  ( A  e.  (SubGrp `  G
)  ->  ( x  e.  (SubGrp `  H )  <->  x  e.  ( (SubGrp `  G )  i^i  ~P A ) ) )
9897eqrdv 2451 . . . . . . . . . . 11  |-  ( A  e.  (SubGrp `  G
)  ->  (SubGrp `  H
)  =  ( (SubGrp `  G )  i^i  ~P A ) )
9998sseq2d 3462 . . . . . . . . . 10  |-  ( A  e.  (SubGrp `  G
)  ->  ( ran  S 
C_  (SubGrp `  H )  <->  ran 
S  C_  ( (SubGrp `  G )  i^i  ~P A ) ) )
100 ssin 3656 . . . . . . . . . 10  |-  ( ( ran  S  C_  (SubGrp `  G )  /\  ran  S 
C_  ~P A )  <->  ran  S  C_  ( (SubGrp `  G )  i^i  ~P A ) )
10199, 100syl6bbr 267 . . . . . . . . 9  |-  ( A  e.  (SubGrp `  G
)  ->  ( ran  S 
C_  (SubGrp `  H )  <->  ( ran  S  C_  (SubGrp `  G )  /\  ran  S 
C_  ~P A ) ) )
102101anbi2d 711 . . . . . . . 8  |-  ( A  e.  (SubGrp `  G
)  ->  ( ( S  Fn  dom  S  /\  ran  S  C_  (SubGrp `  H
) )  <->  ( S  Fn  dom  S  /\  ( ran  S  C_  (SubGrp `  G
)  /\  ran  S  C_  ~P A ) ) ) )
103 df-f 5589 . . . . . . . 8  |-  ( S : dom  S --> (SubGrp `  H )  <->  ( S  Fn  dom  S  /\  ran  S 
C_  (SubGrp `  H )
) )
104 df-f 5589 . . . . . . . . . 10  |-  ( S : dom  S --> (SubGrp `  G )  <->  ( S  Fn  dom  S  /\  ran  S 
C_  (SubGrp `  G )
) )
105104anbi1i 702 . . . . . . . . 9  |-  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S  C_  ~P A
)  <->  ( ( S  Fn  dom  S  /\  ran  S  C_  (SubGrp `  G
) )  /\  ran  S 
C_  ~P A ) )
106 anass 655 . . . . . . . . 9  |-  ( ( ( S  Fn  dom  S  /\  ran  S  C_  (SubGrp `  G ) )  /\  ran  S  C_  ~P A )  <->  ( S  Fn  dom  S  /\  ( ran  S  C_  (SubGrp `  G
)  /\  ran  S  C_  ~P A ) ) )
107105, 106bitri 253 . . . . . . . 8  |-  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S  C_  ~P A
)  <->  ( S  Fn  dom  S  /\  ( ran 
S  C_  (SubGrp `  G
)  /\  ran  S  C_  ~P A ) ) )
108102, 103, 1073bitr4g 292 . . . . . . 7  |-  ( A  e.  (SubGrp `  G
)  ->  ( S : dom  S --> (SubGrp `  H )  <->  ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A ) ) )
109108anbi1d 712 . . . . . 6  |-  ( A  e.  (SubGrp `  G
)  ->  ( ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A )  /\  A. x  e.  dom  S
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
11091, 109bitr3d 259 . . . . 5  |-  ( A  e.  (SubGrp `  G
)  ->  ( ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) )  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A )  /\  A. x  e.  dom  S
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
111110adantr 467 . . . 4  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  (
( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) )  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A )  /\  A. x  e.  dom  S
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
112 dmexg 6729 . . . . . 6  |-  ( S  e.  _V  ->  dom  S  e.  _V )
113112adantl 468 . . . . 5  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  dom  S  e.  _V )
114 eqidd 2454 . . . . 5  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  dom  S  =  dom  S )
11541adantr 467 . . . . 5  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  H  e.  Grp )
116 eqid 2453 . . . . . . . 8  |-  ( 0g
`  H )  =  ( 0g `  H
)
11726, 116, 46dmdprd 17642 . . . . . . 7  |-  ( ( dom  S  e.  _V  /\ 
dom  S  =  dom  S )  ->  ( H dom DProd  S  <->  ( H  e. 
Grp  /\  S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) )
118 3anass 990 . . . . . . 7  |-  ( ( H  e.  Grp  /\  S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) )  <->  ( H  e.  Grp  /\  ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) )
119117, 118syl6bb 265 . . . . . 6  |-  ( ( dom  S  e.  _V  /\ 
dom  S  =  dom  S )  ->  ( H dom DProd  S  <->  ( H  e. 
Grp  /\  ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) ) )
120119baibd 921 . . . . 5  |-  ( ( ( dom  S  e. 
_V  /\  dom  S  =  dom  S )  /\  H  e.  Grp )  ->  ( H dom DProd  S  <->  ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) )
121113, 114, 115, 120syl21anc 1268 . . . 4  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  ( H dom DProd  S  <->  ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) )
12235adantr 467 . . . . . . 7  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  G  e.  Grp )
12325, 84, 63dmdprd 17642 . . . . . . . . 9  |-  ( ( dom  S  e.  _V  /\ 
dom  S  =  dom  S )  ->  ( G dom DProd  S  <->  ( G  e. 
Grp  /\  S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
124 3anass 990 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )  <->  ( G  e.  Grp  /\  ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
125123, 124syl6bb 265 . . . . . . . 8  |-  ( ( dom  S  e.  _V  /\ 
dom  S  =  dom  S )  ->  ( G dom DProd  S  <->  ( G  e. 
Grp  /\  ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) ) )
126125baibd 921 . . . . . . 7  |-  ( ( ( dom  S  e. 
_V  /\  dom  S  =  dom  S )  /\  G  e.  Grp )  ->  ( G dom DProd  S  <->  ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
127113, 114, 122, 126syl21anc 1268 . . . . . 6  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  ( G dom DProd  S  <->  ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
128127anbi1d 712 . . . . 5  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  (
( G dom DProd  S  /\  ran  S  C_  ~P A
)  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )  /\  ran  S  C_  ~P A
) ) )
129 an32 808 . . . . 5  |-  ( ( ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )  /\  ran  S  C_  ~P A
)  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A )  /\  A. x  e.  dom  S
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) )
130128, 129syl6bb 265 . . . 4  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  (
( G dom DProd  S  /\  ran  S  C_  ~P A
)  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A )  /\  A. x  e.  dom  S
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
131111, 121, 1303bitr4d 289 . . 3  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  ( H dom DProd  S  <->  ( G dom DProd  S  /\  ran  S  C_  ~P A ) ) )
132131ex 436 . 2  |-  ( A  e.  (SubGrp `  G
)  ->  ( S  e.  _V  ->  ( H dom DProd  S  <->  ( G dom DProd  S  /\  ran  S  C_  ~P A ) ) ) )
1333, 6, 132pm5.21ndd 356 1  |-  ( A  e.  (SubGrp `  G
)  ->  ( H dom DProd  S  <->  ( G dom DProd  S  /\  ran  S  C_  ~P A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 986    = wceq 1446    e. wcel 1889   A.wral 2739   _Vcvv 3047    \ cdif 3403    i^i cin 3405    C_ wss 3406   ~Pcpw 3953   {csn 3970   U.cuni 4201   class class class wbr 4405   dom cdm 4837   ran crn 4838   "cima 4840    Fn wfn 5580   -->wf 5581   ` cfv 5585  (class class class)co 6295   Basecbs 15133   ↾s cress 15134   0gc0g 15350  Moorecmre 15500  mrClscmrc 15501  ACScacs 15503   Grpcgrp 16681  SubGrpcsubg 16823  Cntzccntz 16981   DProd cdprd 17637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-iin 4284  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-oadd 7191  df-er 7368  df-ixp 7528  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-nn 10617  df-2 10675  df-ndx 15136  df-slot 15137  df-base 15138  df-sets 15139  df-ress 15140  df-plusg 15215  df-0g 15352  df-mre 15504  df-mrc 15505  df-acs 15507  df-mgm 16500  df-sgrp 16539  df-mnd 16549  df-submnd 16595  df-grp 16685  df-minusg 16686  df-subg 16826  df-cntz 16983  df-dprd 17639
This theorem is referenced by:  subgdprd  17680  ablfaclem3  17732
  Copyright terms: Public domain W3C validator