MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdprd Structured version   Visualization version   GIF version

Theorem subgdprd 18257
Description: A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
subgdprd.1 𝐻 = (𝐺s 𝐴)
subgdprd.2 (𝜑𝐴 ∈ (SubGrp‘𝐺))
subgdprd.3 (𝜑𝐺dom DProd 𝑆)
subgdprd.4 (𝜑 → ran 𝑆 ⊆ 𝒫 𝐴)
Assertion
Ref Expression
subgdprd (𝜑 → (𝐻 DProd 𝑆) = (𝐺 DProd 𝑆))

Proof of Theorem subgdprd
StepHypRef Expression
1 subgdprd.2 . . . . . 6 (𝜑𝐴 ∈ (SubGrp‘𝐺))
2 subgdprd.1 . . . . . . 7 𝐻 = (𝐺s 𝐴)
32subggrp 17420 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
41, 3syl 17 . . . . 5 (𝜑𝐻 ∈ Grp)
5 eqid 2610 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
65subgacs 17452 . . . . 5 (𝐻 ∈ Grp → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
7 acsmre 16136 . . . . 5 ((SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
84, 6, 73syl 18 . . . 4 (𝜑 → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
9 subgrcl 17422 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
101, 9syl 17 . . . . . 6 (𝜑𝐺 ∈ Grp)
11 eqid 2610 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
1211subgacs 17452 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
13 acsmre 16136 . . . . . 6 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
1410, 12, 133syl 18 . . . . 5 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
15 eqid 2610 . . . . 5 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
16 subgdprd.3 . . . . . . . 8 (𝜑𝐺dom DProd 𝑆)
17 dprdf 18228 . . . . . . . 8 (𝐺dom DProd 𝑆𝑆:dom 𝑆⟶(SubGrp‘𝐺))
18 frn 5966 . . . . . . . 8 (𝑆:dom 𝑆⟶(SubGrp‘𝐺) → ran 𝑆 ⊆ (SubGrp‘𝐺))
1916, 17, 183syl 18 . . . . . . 7 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
20 mresspw 16075 . . . . . . . 8 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
2114, 20syl 17 . . . . . . 7 (𝜑 → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
2219, 21sstrd 3578 . . . . . 6 (𝜑 → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
23 sspwuni 4547 . . . . . 6 (ran 𝑆 ⊆ 𝒫 (Base‘𝐺) ↔ ran 𝑆 ⊆ (Base‘𝐺))
2422, 23sylib 207 . . . . 5 (𝜑 ran 𝑆 ⊆ (Base‘𝐺))
2514, 15, 24mrcssidd 16108 . . . 4 (𝜑 ran 𝑆 ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
2615mrccl 16094 . . . . . 6 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ran 𝑆 ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐺))
2714, 24, 26syl2anc 691 . . . . 5 (𝜑 → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐺))
28 subgdprd.4 . . . . . . 7 (𝜑 → ran 𝑆 ⊆ 𝒫 𝐴)
29 sspwuni 4547 . . . . . . 7 (ran 𝑆 ⊆ 𝒫 𝐴 ran 𝑆𝐴)
3028, 29sylib 207 . . . . . 6 (𝜑 ran 𝑆𝐴)
3115mrcsscl 16103 . . . . . 6 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ran 𝑆𝐴𝐴 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ⊆ 𝐴)
3214, 30, 1, 31syl3anc 1318 . . . . 5 (𝜑 → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ⊆ 𝐴)
332subsubg 17440 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐺) → (((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ⊆ 𝐴)))
341, 33syl 17 . . . . 5 (𝜑 → (((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ⊆ 𝐴)))
3527, 32, 34mpbir2and 959 . . . 4 (𝜑 → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐻))
36 eqid 2610 . . . . 5 (mrCls‘(SubGrp‘𝐻)) = (mrCls‘(SubGrp‘𝐻))
3736mrcsscl 16103 . . . 4 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ ran 𝑆 ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∧ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐻)) → ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
388, 25, 35, 37syl3anc 1318 . . 3 (𝜑 → ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
392subgdmdprd 18256 . . . . . . . . . . 11 (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
401, 39syl 17 . . . . . . . . . 10 (𝜑 → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
4116, 28, 40mpbir2and 959 . . . . . . . . 9 (𝜑𝐻dom DProd 𝑆)
42 eqidd 2611 . . . . . . . . 9 (𝜑 → dom 𝑆 = dom 𝑆)
4341, 42dprdf2 18229 . . . . . . . 8 (𝜑𝑆:dom 𝑆⟶(SubGrp‘𝐻))
44 frn 5966 . . . . . . . 8 (𝑆:dom 𝑆⟶(SubGrp‘𝐻) → ran 𝑆 ⊆ (SubGrp‘𝐻))
4543, 44syl 17 . . . . . . 7 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐻))
46 mresspw 16075 . . . . . . . 8 ((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) → (SubGrp‘𝐻) ⊆ 𝒫 (Base‘𝐻))
478, 46syl 17 . . . . . . 7 (𝜑 → (SubGrp‘𝐻) ⊆ 𝒫 (Base‘𝐻))
4845, 47sstrd 3578 . . . . . 6 (𝜑 → ran 𝑆 ⊆ 𝒫 (Base‘𝐻))
49 sspwuni 4547 . . . . . 6 (ran 𝑆 ⊆ 𝒫 (Base‘𝐻) ↔ ran 𝑆 ⊆ (Base‘𝐻))
5048, 49sylib 207 . . . . 5 (𝜑 ran 𝑆 ⊆ (Base‘𝐻))
518, 36, 50mrcssidd 16108 . . . 4 (𝜑 ran 𝑆 ⊆ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆))
5236mrccl 16094 . . . . . . 7 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ ran 𝑆 ⊆ (Base‘𝐻)) → ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐻))
538, 50, 52syl2anc 691 . . . . . 6 (𝜑 → ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐻))
542subsubg 17440 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝐺) → (((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ⊆ 𝐴)))
551, 54syl 17 . . . . . 6 (𝜑 → (((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ⊆ 𝐴)))
5653, 55mpbid 221 . . . . 5 (𝜑 → (((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ⊆ 𝐴))
5756simpld 474 . . . 4 (𝜑 → ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐺))
5815mrcsscl 16103 . . . 4 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ran 𝑆 ⊆ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∧ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆))
5914, 51, 57, 58syl3anc 1318 . . 3 (𝜑 → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆))
6038, 59eqssd 3585 . 2 (𝜑 → ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
6136dprdspan 18249 . . 3 (𝐻dom DProd 𝑆 → (𝐻 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆))
6241, 61syl 17 . 2 (𝜑 → (𝐻 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆))
6315dprdspan 18249 . . 3 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
6416, 63syl 17 . 2 (𝜑 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
6560, 62, 643eqtr4d 2654 1 (𝜑 → (𝐻 DProd 𝑆) = (𝐺 DProd 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wss 3540  𝒫 cpw 4108   cuni 4372   class class class wbr 4583  dom cdm 5038  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  Basecbs 15695  s cress 15696  Moorecmre 16065  mrClscmrc 16066  ACScacs 16068  Grpcgrp 17245  SubGrpcsubg 17411   DProd cdprd 18215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-gim 17524  df-cntz 17573  df-oppg 17599  df-cmn 18018  df-dprd 18217
This theorem is referenced by:  ablfaclem3  18309
  Copyright terms: Public domain W3C validator